scholarly journals Circular RNA Transcriptomic Analysis of Primary Human Brain Microvascular Endothelial Cells Infected with Meningitic Escherichia coli

2018 ◽  
Vol 13 ◽  
pp. 651-664 ◽  
Author(s):  
Ruicheng Yang ◽  
Bojie Xu ◽  
Bo Yang ◽  
Jiyang Fu ◽  
Lu Liu ◽  
...  
2006 ◽  
Vol 74 (10) ◽  
pp. 5609-5616 ◽  
Author(s):  
Ching-Hao Teng ◽  
Yi Xie ◽  
Sooan Shin ◽  
Francescopaolo Di Cello ◽  
Maneesh Paul-Satyaseela ◽  
...  

ABSTRACT We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.


2010 ◽  
Vol 78 (7) ◽  
pp. 3090-3096 ◽  
Author(s):  
Ching-Hao Teng ◽  
Yu-Ting Tseng ◽  
Ravi Maruvada ◽  
Donna Pearce ◽  
Yi Xie ◽  
...  

ABSTRACT Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMECs) is a prerequisite for its traversal of the blood-brain barrier (BBB) and penetration into the brain. In the present study, we identified NlpI as a novel bacterial determinant contributing to E. coli K1 interaction with HBMECs. The deletion of nlpI did not affect the expression of the known bacterial determinants involved in E. coli K1-HBMEC interaction, such as type 1 fimbriae, flagella, and OmpA, and the contribution of NlpI to HBMECs binding and invasion was independent of those bacterial determinants. Previous reports have shown that the nlpI mutant of E. coli K-12 exhibits growth defect at 42°C at low osmolarity, and its thermosensitive phenotype can be suppressed by a mutation on the spr gene. The nlpI mutant of strain RS218 exhibited similar thermosensitive phenotype, but additional spr mutation did not restore the ability of the nlpI mutant to interact with HBMECs. These findings suggest the decreased ability of the nlpI mutant to interact with HBMECs is not associated with the thermosensitive phenotype. NlpI was determined as an outer membrane-anchored protein in E. coli, and the nlpI mutant was defective in cytosolic phospholipase A2α (cPLA2α) phosphorylation compared to the parent strain. These findings illustrate the first demonstration of NlpI's contribution to E. coli K1 binding to and invasion of HBMECs, and its contribution is likely to involve cPLA2α.


Sign in / Sign up

Export Citation Format

Share Document