Surface waves with near-zero or negative group velocity on one-dimensional photonic crystal coated with one metal film

2013 ◽  
Vol 298-299 ◽  
pp. 129-134 ◽  
Author(s):  
Yun-tuan Fang ◽  
Xue-hua Song ◽  
Li-zhong Lu ◽  
Ji-jun Wang ◽  
Ying-xin Jiang ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luis Torrijos-Morán ◽  
Amadeu Griol ◽  
Jaime García-Rupérez

AbstractStrongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hong Woo Park ◽  
Joo Hwan Oh

Abstract Generally, it has been known that the optical branch of a simple one-dimensional periodic structure has a negative group velocity at the first Brillouin zone due to the band-folding effect. However, the optical branch of the flexural wave in one-dimensional periodic structure doesn’t always have negative group velocity. The problem is that the condition whether the group velocity of the flexural optical branch is negative, positive or positive-negative has not been studied yet. In consequence, who try to achieve negative group velocity has suffered from trial-error process without an analytic guideline. In this paper, the analytic investigation for this abnormal behavior is carried out. In particular, we discovered that the group velocity of the optical branch in flexural metamaterials is determined by a simple condition expressed in terms of a stiffness ratio and inertia ratio of the metamaterial. To derive the analytic condition, an extended mass-spring system is used to calculate the wave dispersion relationship in flexural metamaterials. For the validation, various numerical simulations are carried out, including a dispersion curve calculation and three-dimensional wave simulation. The results studied in this paper are expected to provide new guidelines in designing flexural metamaterials to have desired wave dispersion curves.


2018 ◽  
Vol 190 ◽  
pp. 03010 ◽  
Author(s):  
Kirill Prusakov ◽  
Dmitry Basmanov ◽  
Dmitry Klinov

A new method of specimen illumination for wide-field fluorescence microscopy has been presented. This method allows to excite the fluorescence in a thin near-surface layer of the studied object. As a result, the captured images have greater contrast and signal-to-background ratio in comparison with the epifluorescence ones. The long-range surface waves in one-dimensional photonic crystal have been used to localize the electromagnetic field exciting the fluorescence. An experimental setup has been created to excite the surface waves and obtain images of the objects from the near-surface layer. For an illustration of the possibilities of our method, we conducted several experiments with specimens that are typical for fluorescence microscopy, such as bacteria and eukaryotic cells.


2015 ◽  
Vol 40 (21) ◽  
pp. 4883 ◽  
Author(s):  
Daniil A. Shilkin ◽  
Evgeny V. Lyubin ◽  
Irina V. Soboleva ◽  
Andrey A. Fedyanin

Sign in / Sign up

Export Citation Format

Share Document