Time-resolved single-molecule fluorescence microscopy: Pump–probe scheme employing bursts of pulses and gated photon counting

2018 ◽  
Vol 420 ◽  
pp. 215-218 ◽  
Author(s):  
Takashige Fujiwara
2013 ◽  
Vol 368 (1611) ◽  
pp. 20120035 ◽  
Author(s):  
X. Michalet ◽  
R. A. Colyer ◽  
G. Scalia ◽  
A. Ingargiola ◽  
R. Lin ◽  
...  

Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Birgit Plochberger ◽  
Clemens Röhrl ◽  
Johannes Preiner ◽  
Christian Rankl ◽  
Mario Brameshuber ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 723a
Author(s):  
Robin Johnson ◽  
Joseph Schauerte ◽  
Christian Althaus ◽  
Cynthia Carruthers ◽  
Michael Sutton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document