A high-sensitivity sensor based on tapered dispersion compensation fiber for curvature and temperature measurement

2021 ◽  
Vol 481 ◽  
pp. 126534
Author(s):  
Fang Wang ◽  
Long Zhang ◽  
Tao Ma ◽  
Xu Wang ◽  
Kun Yu ◽  
...  
2020 ◽  
Vol 315 ◽  
pp. 112341
Author(s):  
Zhaojun Liu ◽  
Bian Tian ◽  
Xu Fan ◽  
Jiangjiang Liu ◽  
Zhongkai Zhang ◽  
...  

2020 ◽  
Vol 47 (4) ◽  
pp. 0404003
Author(s):  
刘海 Liu Hai ◽  
白冰冰 Bai Bingbing ◽  
张砚曾 Zhang Yanzeng ◽  
陈聪 Chen Cong ◽  
邵齐元 Shao Qiyuan ◽  
...  

2015 ◽  
Vol 28 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Milos Frantlovic ◽  
Ivana Jokic ◽  
Zarko Lazic ◽  
Branko Vukelic ◽  
Marko Obradov ◽  
...  

Temperature and pressure are the most common parameters to be measured and monitored not only in industrial processes but in many other fields from vehicles and healthcare to household appliances. Silicon microelectromechanical (MEMS) piezoresistive pressure sensors are the first and the most successful MEMS sensors, offering high sensitivity, solid-state reliability and small dimensions at a low cost achieved by mass production. The inherent temperature dependence of the output signal of such sensors adversely affects their pressure measurement performance, necessitating the use of correction methods in a majority of cases. However, the same effect can be utilized for temperature measurement, thus enabling new sensor applications. In this paper we perform characterization of MEMS piezoresistive pressure sensors for temperature measurement, propose a sensor correction method, and demonstrate that the measurement error as low as ? 0.3?C can be achieved.


Sign in / Sign up

Export Citation Format

Share Document