flexible substrate
Recently Published Documents


TOTAL DOCUMENTS

1491
(FIVE YEARS 428)

H-INDEX

46
(FIVE YEARS 11)

2022 ◽  
Vol 140 ◽  
pp. 106388
Author(s):  
Shanshan Yu ◽  
Chenyang Wang ◽  
Jinlong Wang ◽  
Deshui Yu ◽  
Kejun Ma ◽  
...  

Author(s):  
Minki Lee ◽  
Sajjan Parajuli ◽  
Hyeokgyun Moon ◽  
Ryungeun Song ◽  
Saebom Lee ◽  
...  

Abstract The rheological properties of silver inks are analyzed, and the printing results are presented based on the inks and roll-to-roll printing speed. The shear viscosity, shear modulus, and extensional viscosity of the inks are measured using rotational and extensional rheometers. The inks exhibit the shear thinning power law fluids because the concentration of dispersed nanoparticles in the solvent is sufficiently low, which minimizes elasticity. After the inks are printed on a flexible substrate through gravure printing, the optical images, surface profiles, and electric resistances of the printed pattern are obtained. The width and height of the printed pattern change depending on the ink viscosity, whereas the printing speed does not significantly affect the widening. The drag-out tail is reduced at high ink viscosities and fast printing speeds, thereby improving the printed pattern quality in the roll-to-roll process. Based on the results obtained, we suggest ink and printing conditions that result in high printing quality for complicated printings, such as overlay printing registration accuracy, which imposes pattern widening and drag-out tails in printed patterns.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Gui Bing Hong ◽  
Yi Hua Luo ◽  
Kai Jen Chuang ◽  
Hsiu Yueh Cheng ◽  
Kai Chau Chang ◽  
...  

In the scientific industry, sustainable nanotechnology has attracted great attention and has been successful in facilitating solutions to challenges presented in various fields. For the present work, silver nanoparticles (AgNPs) were prepared using a chemical reduction synthesis method. Then, a low-temperature sintering process was deployed to obtain an Ag-conductive ink preparation which could be applied to a flexible substrate. The size and shape of the AgNPs were characterized by ultraviolet–visible spectrophotometry (UV-Vis) and transmission electron microscopy (TEM). The experiments indicated that the size and agglomeration of the AgNPs could be well controlled by varying the reaction time, reaction temperature, and pH value. The rate of nanoparticle generation was the highest when the reaction temperature was 100 °C within the 40 min reaction time, achieving the most satisfactorily dispersed nanoparticles and nanoballs with an average size of 60.25 nm at a pH value of 8. Moreover, the electrical resistivity of the obtained Ag-conductive ink is controllable, under the optimal sintering temperature and time (85 °C for 5 min), leading to an optimal electrical resistivity of 9.9 × 10−6 Ω cm. The results obtained in this study, considering AgNPs and Ag-conductive ink, may also be extended to other metals in future research.


2021 ◽  
Vol 21 (2) ◽  
pp. 140
Author(s):  
Teguh Praludi ◽  
Yana Taryana ◽  
Ken Paramayudha ◽  
Budi Prawara ◽  
Yusnita Rahayu ◽  
...  

This paper presents the design, simulation, realization and analysis of flexible microstrip patch antenna for S-band applications. The proposed design also adopts the conformal structure by utilizing flexible substrate. Conformal or flexible structure allows the antenna to fit with any specified shape as desired. The antenna patch dimensions is 43 mm × 25 mm without SMA connector. The patch is etched on the flexible dielectric substrate, pyralux FR 9111, with a relative dielectric constant of εr = 3 and the thickness of substrate, h = 0.025 mm. The antenna is designed to resonate at 3.2 GHz. The return loss (RL) of the simulation is -35.80 dB at the center frequency of 3.2 GHz. The fabricated antenna prototype was measured at different bending angles scenarios including 0º, 30º, 60º, and 90º. The measurement of antenna prototype shows that the center frequency is shifted to the higher frequency of 3.29 GHz, compared to the simulation result. Among these scenarios, measurement at bending angle of 90º gives the best performance with RL = - 31.38 dB at 3.29 GHz, the bandwidth is 80 MHz, and the impedance ZA = 48.36 + j2.04 Ω. Despite a slight differences from simulation results, the designed antenna still performs well as expected.


Author(s):  
Iryna Borysenko ◽  
Olexandr Burmenko ◽  
Natalya Deyneko ◽  
Oleksandr Zobenko ◽  
Yurii Yivzhenko ◽  
...  

The technology of forming film solar cells based on CdS / CdTe configuration of the "superstrat" type on a flexible substrate has been improved. To increase the efficiency of the developed solar cells on a flexible substrate, a chemical etching procedure in a nitrogen-phosphorus mixture was added to the traditional "chemical treatment". The conducted studies of the output parameters of the developed device structures showed that the highest values are observed in the case of chemical etching, both before the "chloride treatment" and after it. In the course of the study, it was found that a mandatory procedure in the formation of effective device structures is chemical etching in a nitrogen-phosphorus mixture both before the "chloride treatment" and after it. Carrying out the described procedures made it possible to obtain solar cells on a flexible substrate with an efficiency of 13.1 %. The increase in the efficiency of solar cells with two-stage chemical etching can be explained by the formation of excess tellurium on the surface, which leads to a decrease in resistance and, therefore, to a more efficient penetration of chlorine during the subsequent chloride treatment. Analysis of the transverse cleavage of the investigated device structures demonstrates significant grain growth and surface smoothness of the base layer, which ensures good adhesion with back contact. A study of the degradation resistance of the developed device structures during operation has been carried out. It was found that the obtained solar cells based on CdTe on a flexible substrate have a high degradation resistance and after 10 bending cycles there is no decrease in the output parameters. Thus, it has been established that chemical etching in a nitrogen-phosphorus mixture is a mandatory procedure for the formation of efficient solar cells on a flexible substrate.


2021 ◽  
Author(s):  
Luo wei ◽  
Mei Shunqi ◽  
Liu Teng ◽  
Yang Liye ◽  
Fan Lingling

Abstract Flexible conductive thin films have recently become a research area of focus in both academia and industry. In this study, a method of preparing nanofiber conductive films by centrifugal spinning is proposed. Polyurethane (PU) nanofiber films were prepared by centrifugal spinning as the flexible substrate film, and carbon nanotubes (CNTs) were used as the conducting medium, to obtain CNTs/PU nanofiber conductive films with good conductivity and elasticity. The effects of different CNT concentrations on the properties of the nanofiber films were investigated. It was found that the conductivity of the nanofiber conductive films was optimal when an impregnation concentration of 9% CNTs was used in the stretching process. Cyclic tensile resistance tests showed that the nanofiber conductive films have good durability and repeatability. Physical and structural property analysis of the CNT/PU conductive films indicate that the adsorption of the CNTs on the PU surface was successful and the CNTs were evenly dispersed on the surface of the matrix. Moreover, the CNTs improved the thermal stability of the PU membrane. The CNT/PU conductive films were pasted onto a human finger joint, wrist joint, and Adam's apple to test the detection of movement. The results showed that finger bending, wrist bending, and laryngeal prominence movement all caused a change in resistance of the conductive film, with an approximately linear curve. The results indicate that the CNT/PU nanofiber conductive film developed in this study can be used to test the motion of human joints.


2021 ◽  
Author(s):  
Liang Cai ◽  
Krishna M Kovur ◽  
Prashanthi Kovur ◽  
Carlo D. Montemagno

We report the design, fabrication and quantitative performance analysis of a low-cost, flexible carbon nanotube (CNT) network-based deoxyribonucleic acid (DNA) sensor. These sensors comprise an array of ink-jet printed silver (Ag) electrodes on a transparent polyethylene terephthalate (PET) flexible substrate, where a CNT network acts as a sensing layer. The DNA hybridization is studied by immobilizing single-stranded DNA (ssDNA) probes on the CNT surface; these probes recognize their complementary DNA target. Further, we have carried out a quantitative performance analysis of the flexible CNT biosensors using the analytic hierarchy process (AHP). We have identified various influencing factors and sub-factors (performance indicators), and quantified the performance of the flexible CNT biosensors in different measured states (before bending, during bending and after bending). Additionally, the noise and other external factors contributing to the measured real signal have been quantified. The interpretation of the overall outcome will enable the improvement of the performance of flexible biosensors fabricated through large-scale manufacturing for possible commercialization.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1536
Author(s):  
Guochang Liu ◽  
Wenping Cao ◽  
Guojun Zhang ◽  
Zhihao Wang ◽  
Haoyu Tan ◽  
...  

The exploration of marine resources has become an essential part of the development of marine strategies of various countries. MEMS vector hydrophone has great application value in the exploration of marine resources. However, existing MEMS vector hydrophones have a narrow frequency bandwidth and are based on rigid substrates, which are not easy to be bent in the array of underwater robots. This paper introduces a new type of flexible buckling crossbeam–cilium flexible MEMS vector hydrophone, arranged on a curved surface by a flexible substrate. A hydrophone model in the fluid domain was established by COMSOL Multiphysics software. A flexible hydrophone with a bandwidth of 20~4992 Hz, a sensitivity of −193.7 dB, excellent “8” character directivity, and a depth of concave point of 41.5 dB was obtained through structured data optimization. This study plays a guiding role in the manufacture and application of flexible hydrophones and sheds light on a new way of marine exploration.


Author(s):  
Bernardo Patella ◽  
Nadia Moukri ◽  
Gaia Regalbuto ◽  
Giuseppe Aiello ◽  
Chiara Cipollina ◽  
...  

Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation Consequently, the development of simple, fast and reliable systems for IgG detection are of considerable interest which can be achieved using electrochemical sandwich-type immunosensors. In this study we have developed an immunosensor sub-strate using an inexpensive and very simple fabrication method based on ZnO nanorods obtained through the electrodeposition of ZnO. The ZnO nanorods were treated by electrodepositing a layer of reduced gra-phene oxide to ensure an easy immobilization of the antibodies. On this substrate, the sandwich configura-tion of the immunosensor was built through different incubation steps, that were all optimized. The im-munosensor is electrochemically active thanks to the presence of gold nanoparticles tagging the secondary antibody, therefore it has been used to measure the current density of the hydrogen development reaction which is indirectly linked to the concentration of H-IgG antigens. In this way the calibration curve was constructed obtaining a linear range of 1-100 ng / ml with a detection limit of few ng / mL and good sensi-tivity.


Sign in / Sign up

Export Citation Format

Share Document