Multi-trap optical tweezers based on composite vortex beams

2021 ◽  
Vol 485 ◽  
pp. 126712
Author(s):  
Yuehan Tian ◽  
Lulu Wang ◽  
Gaoyan Duan ◽  
Li Yu
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Zhirong Liu ◽  
Kelin Huang ◽  
Anlian Yang ◽  
Xun Wang ◽  
Philip H. Jones

In this paper, a recently-proposed pure-phase optical element, the fractal conical lens (FCL), is introduced for the regulation of strongly-focused circularly-polarized optical vortices in a high numerical aperture (NA) optical system. Strong focusing characteristics of circularly polarized optical vortices through a high NA system in cases with and without a FCL are investigated comparatively. Moreover, the conversion between spin angular momentum (SAM) and orbital angular momentum (OAM) of the focused optical vortex in the focal vicinity is also analyzed. Results revealed that a FCL of different stage S could significantly regulate the distributions of tight focusing intensity and angular momentum of the circularly polarized optical vortex. The interesting results obtained here may be advantageous when using a FCL to shape vortex beams or utilizing circularly polarized vortex beams to exploit new-type optical tweezers.


2003 ◽  
Author(s):  
Halina Rubinsztein-Dunlop ◽  
Alexis Bishop ◽  
Timo Nieminen ◽  
Simon Parkin ◽  
Norman Heckenberg

2016 ◽  
Vol 78 ◽  
pp. 132-139 ◽  
Author(s):  
Sujuan Huang ◽  
Zhuang Miao ◽  
Chao He ◽  
Fufei Pang ◽  
Yingchun Li ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hao Zhang ◽  
Jun Zeng ◽  
Xingyuan Lu ◽  
Zhuoyi Wang ◽  
Chengliang Zhao ◽  
...  

Abstract As an indispensable complement to an integer vortex beam, the fractional vortex beam has unique physical properties such as radially notched intensity distribution, complex phase structure consisting of alternating charge vortex chains, and more sophisticated orbital angular momentum modulation dimension. In recent years, we have noticed that the fractional vortex beam was widely used for complex micro-particle manipulation in optical tweezers, improving communication capacity, controllable edge enhancement of image and quantum entanglement. Moreover, this has stimulated extensive research interest, including the deep digging of the phenomenon and physics based on different advanced beam sources and has led to a new research boom in micro/nano-optical devices. Here, we review the recent advances leading to theoretical models, propagation, generation, measurement, and applications of fractional vortex beams and consider the possible directions and challenges in the future.


2020 ◽  
Vol 463 ◽  
pp. 125341 ◽  
Author(s):  
Mateusz Szatkowski ◽  
Jan Masajada ◽  
Ireneusz Augustyniak ◽  
Klaudia Nowacka

Author(s):  
A. A. AlKelly ◽  
Ibrahim G. H. Loqman ◽  
Hassan T. Al-Ahsab

Focus shaping of cylindrically polarized vortex beams (CPVBs) by linear axicon is studied theoretically. Vector diffraction theory has been used to derive the expressions of the light field in the focal region. It is shown that a different intensity distribution in the focal region can be obtained by adjusting the topological charge, the polarization rotation angle and the numerical aperture maximal angle. A focal spot, a dark channel and a flat-topped shapes are formed by choosing proper values of parameters. A controllable polarization state of dark channel is obtained. The different focal region shapes may find wide applications such as material processing and optical tweezers.


Author(s):  
Keith Miller ◽  
Yuan Li ◽  
Wenzhe Li ◽  
Ramesh K. Shori ◽  
Eric G. Johnson

2019 ◽  
Vol 46 (1) ◽  
pp. 0104008
Author(s):  
毛宁 Mao Ning ◽  
韦宏艳 Wei Hongyan ◽  
蔡冬梅 Cai Dongmei ◽  
贾鹏 Jia Peng

2004 ◽  
Vol 51 (3) ◽  
pp. 409-414 ◽  
Author(s):  
P. Jordan ◽  
J. Leach ◽  
M. J. Padgett ◽  
J. Cooper ◽  
G. Sinclair
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document