Defining the trapping limits of holographical optical tweezers

2004 ◽  
Vol 51 (3) ◽  
pp. 409-414 ◽  
Author(s):  
P. Jordan ◽  
J. Leach ◽  
M. J. Padgett ◽  
J. Cooper ◽  
G. Sinclair
Keyword(s):  
Author(s):  
Sandip Tiwari

This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices such as optical tweezers, confocal microscopes and atomic clocks. It also explores miniature accelerators as a frontier area in accelerator physics. Plasmonics—the electromagnetic interaction with electron charge cloud—is explored for propagating and confined conditions together with the approaches’ possible uses. Optoelectronic energy conversion is analyzed in organic and inorganic systems, with their underlying interaction physics through solar cells and its thermodynamic limit, and quantum cascade lasers.


2021 ◽  
Vol 2 (1) ◽  
pp. 100283
Author(s):  
Pedro Pompeu ◽  
Pedro S. Lourenço ◽  
Diney S. Ether ◽  
Juliana Soares ◽  
Jefte Farias ◽  
...  

ACS Photonics ◽  
2021 ◽  
Author(s):  
Lachlan W. Russell ◽  
Eloise C. Dossetor ◽  
Alexander A. Wood ◽  
David A. Simpson ◽  
Peter J. Reece

ChemPhysChem ◽  
2021 ◽  
Vol 22 (14) ◽  
pp. 1408-1408
Author(s):  
Joshua D. Kolbow ◽  
Nathan C. Lindquist ◽  
Christopher T. Ertsgaard ◽  
Daehan Yoo ◽  
Sang‐Hyun Oh

2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Quy Ho Quang ◽  
Thanh Thai Doan ◽  
Kien Bui Xuan ◽  
Thang Nguyen Manh

2021 ◽  
Vol 50 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Hannes Witt ◽  
Filip Savić ◽  
Sarah Verbeek ◽  
Jörn Dietz ◽  
Gesa Tarantola ◽  
...  

AbstractMembrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.


Author(s):  
Xuanling Li ◽  
Xing Liu ◽  
Xiaoyu Song ◽  
Yinmei Li ◽  
Ming Li ◽  
...  

Abstract Many cellular processes are orchestrated by dynamic changes in the plasma membrane to form membrane projections and endocytic vesicles in response to extracellular environmental changes. Our previous studies show that ARF6-ACAP4-ezrin signaling regulates membrane dynamics and curvature in response to EGF stimulation. However, there is no quantitative measurement to relate molecular organization of membrane cytoskeletal remodeling to stimulus-elicited mechanosensation on the plasma membrane. Optical tweezers is a powerful tool in the study of membrane tension. Comparing to pulling out an entire membrane tether at one time, the step-like method is more efficient because multiple relaxation curves can be obtained from one membrane tether. Fewer models describe relaxation curves to characterize mechanical properties of cell membrane. Here we establish a new method to measure the membrane relaxation curve of HeLa cells judged by the relationship between membrane tether diameter and tensions. We obtained effective viscosities and static tensions by fitting relaxation curves to our model. We noticed the delicate structure of relaxation curves contains information of cytoskeletal remodeling and lateral protein diffusion. Our study established a quantitative measure to characterize the mechanosensation of epithelial cells in response to stimulus-elicited membrane dynamics.


2011 ◽  
Vol 13 (4) ◽  
pp. 040201-040201 ◽  
Author(s):  
J Leach ◽  
H Rubinsztein-Dunlop

Sign in / Sign up

Export Citation Format

Share Document