vortex beam
Recently Published Documents


TOTAL DOCUMENTS

872
(FIVE YEARS 390)

H-INDEX

38
(FIVE YEARS 11)

2022 ◽  
Vol 150 ◽  
pp. 106841
Author(s):  
Hue Thi Nguyen ◽  
Krzysztof Switkowski ◽  
Adam Filipkowski ◽  
Rafal Kasztelanic ◽  
Dariusz Pysz ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Yaser Delir ghaleh joughi ◽  
Mostafa Sahrai

Abstract Utilizing the vortex beams, we investigate the entanglement between the triple-quantum dot molecule and its spontaneous emission field. We present the spatially dependent quantum dot-photon entanglement created by Laguerre-Gaussian (LG) fields. The degree of position-dependent entanglement (DEM) is controlled by the angular momentum of the LG light and the quantum tunneling effect created by the gate voltage. Various spatial-dependent entanglement distribution is reached just by the magnitude and the sign of the orbital angular momentum (OAM) of the optical vortex beam.


2022 ◽  
Vol 9 ◽  
Author(s):  
Shuwei Qiu ◽  
Jinwen Wang ◽  
Xin Yang ◽  
Mingtao Cao ◽  
Shougang Zhang ◽  
...  

A vector beam with the spatial variation polarization has attracted keen interest and is progressively applied in quantum information, quantum communication, precision measurement, and so on. In this letter, the spectrum observation of the rotational Doppler effect based on the coherent interaction between atoms and structured light in an atomic vapor is realized. The geometric phase and polarization of the structured beam are generated and manipulated by using a flexible and efficacious combination optical elements, converting an initial linearly polarized Gaussian beam into a phase vortex beam or an asymmetric or symmetric vector beam. These three representative types of structured beam independently interact with atoms under a longitudinal magnetic field to explore the rotational Doppler shift associated with the topological charge. We find that the rotational Doppler broadening increases obviously with the topological charge of the asymmetric and symmetric vector beam. There is no rotational Doppler broadening observed from the spectrum of the phase vortex beam, although the topological charge, and spatial profile of the beam change. This study can be applied to estimate the rotational velocity of the atom-level or molecule-level objects, measure the intensity of magnetic fields and study the quantum coherence in atomic ensembles.


2022 ◽  
Vol 20 (1) ◽  
pp. 012601
Author(s):  
Yihua Bai ◽  
Haoran Lv ◽  
Xin Fu ◽  
Yuanjie Yang

2022 ◽  
Vol 71 (1) ◽  
pp. 014203-014203
Author(s):  
Chen Kang ◽  
◽  
Ma Zhi-Yuan ◽  
Zhang Ming-Ming ◽  
Dou Jian-Tai ◽  
...  

2021 ◽  
pp. 2100419
Author(s):  
Jialong Tu ◽  
Xinyue Wang ◽  
Xing Yu ◽  
Haonan Wang ◽  
Dongmei Deng

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 61
Author(s):  
Pengfei Gao ◽  
Rui Yang

We demonstrate the generation of multiple orbital angular momentum (OAM) vortex beams with different radiating states at different frequencies through a laminated meta-surface lens consisting of a dual polarized meta-array interconnected with a frequency selective meta-array. The co-linearly polarized (LP) waves from the source can directly penetrate the meta-surface lens to form multiple OAM vortex beams at one frequency. On the other hand, the meta-surface lens will be capable of releasing the cross-LP counterparts at another frequency with high-efficient polarization conversions to have multiple OAM vortex radiations with different radiating directions and vortex modes. Our design, using laminated meta-surface lens to synthesize multiple OAM vortex beams with orthogonal polarizations at different frequencies, should pave the way for building up more advanced vortex beam communication system with expanded diversity of the meta-device.


Sign in / Sign up

Export Citation Format

Share Document