A new microscopic telecentric stereo vision system - Calibration, rectification, and three-dimensional reconstruction

2019 ◽  
Vol 113 ◽  
pp. 14-22 ◽  
Author(s):  
Yan Hu ◽  
Qian Chen ◽  
Shijie Feng ◽  
Tianyang Tao ◽  
Anand Asundi ◽  
...  
2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091000
Author(s):  
Jiaofei Huo ◽  
Xiaomo Yu

With the development of computer technology and three-dimensional reconstruction technology, three-dimensional reconstruction based on visual images has become one of the research hotspots in computer graphics. Three-dimensional reconstruction based on visual image can be divided into three-dimensional reconstruction based on single photo and video. As an indirect three-dimensional modeling technology, this method is widely used in the fields of film and television production, cultural relics restoration, mechanical manufacturing, and medical health. This article studies and designs a stereo vision system based on two-dimensional image modeling technology. The system can be divided into image processing, camera calibration, stereo matching, three-dimensional point reconstruction, and model reconstruction. In the part of image processing, common image processing methods, feature point extraction algorithm, and edge extraction algorithm are studied. On this basis, interactive local corner extraction algorithm and interactive local edge detection algorithm are proposed. It is found that the Harris algorithm can effectively remove the features of less information and easy to generate clustering phenomenon. At the same time, the method of limit constraints is used to match the feature points extracted from the image. This method has high matching accuracy and short time. The experimental research has achieved good matching results. Using the platform of binocular stereo vision system, each step in the process of three-dimensional reconstruction has achieved high accuracy, thus achieving the three-dimensional reconstruction of the target object. Finally, based on the research of three-dimensional reconstruction of mechanical parts and the designed binocular stereo vision system platform, the experimental results of edge detection, camera calibration, stereo matching, and three-dimensional model reconstruction in the process of three-dimensional reconstruction are obtained, and the full text is summarized, analyzed, and prospected.


2018 ◽  
Vol 161 ◽  
pp. 03020 ◽  
Author(s):  
Ramil Safin ◽  
Roman Lavrenov ◽  
Subir Kumar Saha ◽  
Evgeni Magid

Calibration is essential for any robot vision system for achieving high accuracy in deriving objects metric information. One of typical requirements for a stereo vison system in order to obtain better calibration results is to guarantee that both cameras keep the same vertical level. However, cameras may be displaced due to severe conditions of a robot operating or some other circumstances. This paper presents our experimental approach to the problem of a mobile robot stereo vision system calibration under a hardware imperfection. In our experiments, we used crawler-type mobile robot «Servosila Engineer». Stereo system cameras of the robot were displaced relative to each other, causing loss of surrounding environment information. We implemented and verified checkerboard and circle grid based calibration methods. The two methods comparison demonstrated that a circle grid based calibration should be preferred over a classical checkerboard calibration approach.


Sign in / Sign up

Export Citation Format

Share Document