Cr-doped ZnGa2O4: Simple synthesis of intense red-NIR emitting nanoparticles with enhanced quantum efficiency

2022 ◽  
Vol 123 ◽  
pp. 111919
Author(s):  
Sridhar G. ◽  
Deepak Hebbar N. ◽  
Samvit G. Menon ◽  
Prinston Melroy Lewis ◽  
K.S. Choudhari ◽  
...  
2016 ◽  
Vol 18 (38) ◽  
pp. 26530-26538 ◽  
Author(s):  
Chun Du ◽  
Donghai Li ◽  
Qinyu He ◽  
Junming Liu ◽  
Wei Li ◽  
...  

Hybrid Bi12TiO20/Bi4Ti3O12 composites with a good photocatalytic quantum efficiency explained using a Z-scheme mechanism.


2005 ◽  
Vol 125 ◽  
pp. 193-196 ◽  
Author(s):  
S. L. Oliveira ◽  
S. M. Lima ◽  
T. Catunda ◽  
H. Vargas ◽  
L. A.O. Nunes ◽  
...  

Synlett ◽  
1989 ◽  
Vol 1989 (01) ◽  
pp. 30-32
Author(s):  
Thomas V. Lee ◽  
Alistair J. Leigh ◽  
Christopher B. Chapleo

2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


2020 ◽  
Vol 14 (1) ◽  
pp. 011004
Author(s):  
Shubhra S. Pasayat ◽  
Chirag Gupta ◽  
Matthew S. Wong ◽  
Ryan Ley ◽  
Michael J. Gordon ◽  
...  

Author(s):  
A. V. Ermachikhin ◽  
◽  
Yu. V. Vorobyov ◽  
V. O. Sazonov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document