Distinctive features of Late Palaeozoic massive sulphide deposits in South China

2007 ◽  
Vol 31 (1-4) ◽  
pp. 107-138 ◽  
Author(s):  
Lianxing Gu ◽  
Khin Zaw ◽  
Wenxuan Hu ◽  
Kaijun Zhang ◽  
Pei Ni ◽  
...  
1992 ◽  
Vol 11 (4) ◽  
pp. 344-351 ◽  
Author(s):  
Lianxing Gu ◽  
Hao Yang ◽  
Sujuan Zheng ◽  
Jingjuan Liao

2009 ◽  
Vol 46 (7) ◽  
pp. 481-508 ◽  
Author(s):  
Y. M. DeWolfe ◽  
H. L. Gibson ◽  
B. Lafrance ◽  
A. H. Bailes

The hanging wall to the Flin Flon, Callinan, and Triple 7 volcanogenic massive sulphide deposits of the Flin Flon district is composed of the Hidden and Louis formations. The contact between these formations is marked by mafic tuff that represents a hiatus in effusive volcanism. The formations form a composite volcanic edifice that was erupted and grew within a large, volcanic–tectonic subsidence structure (hosting the deposits) that developed within a rifted-arc environment. The formations are evidence of resurgent effusive volcanism and subsidence following a hiatus in volcanism marked by ore formation since they consist of dominantly basaltic flows, sills, and volcaniclastic rocks with subordinate basaltic andesite and rhyodacitic flows and volcaniclastic rocks. The Hidden formation is interpreted to represent a small shield volcano and the Louis formation a separate shield volcano that developed on its flank. Both the Hidden and Louis volcanic edifices were constructed by continuous, low-volume eruptions of pillow lava. A gradual change from a dominantly extensional environment during the formation of the footwall Flin Flon formation to a progressively more dominant convergent environment during the emplacement of the hanging wall suggests that the Hidden and Louis formations are unlikely to host significant volcanogenic massive sulphide-type mineralization. However, synvolcanic structures in the formations define structural corridors that project downwards into the footwall where they encompass massive sulphide mineralization, indicating their control on ore formation, longevity,and reactivation as magma and fluid pathways during the growth of the Hidden and Louis volcanoes.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 156 ◽  
Author(s):  
Abderrahim Essaifi ◽  
Kathryn Goodenough ◽  
Fernando Tornos ◽  
Abdelhak Outigua ◽  
Abdelmalek Ouadjou ◽  
...  

This work provides an overview of the geological, geochemical, and metallogenic data available up to date on the Moroccan massive sulphide deposits, including some new results, and then discusses the evidences for the epigenetic and syngenetic hypotheses. All of the ore deposits are located within a crustal block located at the intersection between two major shear zones and are characterized by a sustained and long-lived magmatic activity. The ore deposits are located within second-order shear zones, which played an important role in controlling the geometry of the mineralization. The mineralization lacks the unequivocal textural and structural features that are indicative of a sedimentary or diagenetic origin, and a syntectonic to late-tectonic pyrite-rich assemblage is superimposed on an earlier, pretectonic to syntectonic pyrrhotite-rich mineralization. Each deposit has a distinctive pyrrhotite sulfur isotopic signature, while the sulfur isotopic signature of pyrite is similar in all deposits. Lead isotopes suggest a shift from a magmatic source during the pyrrhotite-rich mineralization to a source that is inherited from the host shales during the pyrite-rich mineralization. The O/H isotopic signatures record a predominance of fluids of metamorphic derivation. These results are consistent with a model in which an earlier pyrrhotite-rich mineralization, which formed during transtension, was deformed and then remobilized to pyrite-rich mineralization during transpression.


Sign in / Sign up

Export Citation Format

Share Document