Origin of the Erdaohe Ag–Pb–Zn deposit, central Great Xing’an Range, northeast China: Constraints from fluid inclusions, zircon U–Pb geochronology, and stable isotopes

2021 ◽  
pp. 104309
Author(s):  
Xiaolong He ◽  
Qiuye Yu ◽  
Songyan Liu ◽  
Mingjian Yang ◽  
Da Zhang
Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 591
Author(s):  
Yong-gang Sun ◽  
Bi-le Li ◽  
Qing-feng Ding ◽  
Yuan Qu ◽  
Cheng-ku Wang ◽  
...  

The Fukeshan Cu (Mo) deposit is a newfound porphyry deposit in the northern Great Xing’an Range (GXR), northeast China. In this paper, we present results of chalcopyrite Re–Os geochronology, microthermometry of the fluid inclusions (FIs), and isotopic (H–O–S–Pb) compositions of the Fukeshan Cu (Mo) deposit. Its ore-forming process can be divided into sulfide-barren quartz veins (A vein; stage I), quartz + chalcopyrite + pyrite veins (B vein; stage II), quartz + polymetallic sulfide veins (D vein; stage III), and barren quartz + carbonate ± pyrite veins (E vein; stage IV), with Cu mineralization mainly occurred in stage II. Three types of FIs are identified in this deposit: liquid-rich two-phase (L-type) FIs, vapor-rich two-phase (V-type) FIs, daughter mineral-bearing three-phase (S-type) FIs. The homogenization temperatures of primary FIs hosted in quartz of stages I–IV are 381–494 °C, 282–398 °C, 233–340 °C, and 144–239 °C, with salinities of 7.2–58.6, 4.8–9.9, 1.4–7.9, and 0.9–3.9 wt. % NaCl equivalent, respectively. FIs microthermometry and H–O isotope data suggest that the ore-forming fluids were magmatic in origin and were gradually mixed with meteoric water from stages II to IV. Sulfur and lead isotope results indicate that the ore-forming materials of the Fukeshan Cu (Mo) deposit were likely to have originated from Late Jurassic intrusive rocks. The available data suggest that fluid cooling and incursions of meteoric water into the magmatic fluids were two important factors for Cu precipitation in the Fukeshan Cu (Mo) deposit. Chalcopyrite Re–Os dating yielded an isochron age of 144.7 ± 5.4 Ma, which is similar to the zircon U–Pb age of the quartz diorite porphyry, indicating that Late Jurassic quartz diorite porphyry and Cu mineralization occurred contemporaneously.


2017 ◽  
Vol 67 (2) ◽  
pp. 207-227 ◽  
Author(s):  
Xuebing Zhang ◽  
Keyong Wang ◽  
Lijuan Fu ◽  
Miao Zhang ◽  
Yassa Konare ◽  
...  

2018 ◽  
Vol 69 (2) ◽  
pp. 148-166 ◽  
Author(s):  
Qiuming Pei ◽  
Shouting Zhang ◽  
Ken‐ichiro Hayashi ◽  
Liang Wang ◽  
Huawen Cao ◽  
...  

2018 ◽  
Vol 94 ◽  
pp. 367-382 ◽  
Author(s):  
Yin-Hong Wang ◽  
Fang-Fang Zhang ◽  
Jia-Jun Liu ◽  
Chun-Ji Xue ◽  
Zhao-Chong Zhang

2014 ◽  
Vol 57 ◽  
pp. 351-362 ◽  
Author(s):  
Jinjie Yu ◽  
Jingwen Mao ◽  
Fuxiong Chen ◽  
Yonghui Wang ◽  
Linrui Che ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document