Vertex disjoint cycles of different lengths in d-arc-dominated digraphs

2014 ◽  
Vol 42 (5) ◽  
pp. 351-354 ◽  
Author(s):  
Ngo Dac Tan
Author(s):  
Vera Traub ◽  
Thorben Tröbst

AbstractWe consider the capacitated cycle covering problem: given an undirected, complete graph G with metric edge lengths and demands on the vertices, we want to cover the vertices with vertex-disjoint cycles, each serving a demand of at most one. The objective is to minimize a linear combination of the total length and the number of cycles. This problem is closely related to the capacitated vehicle routing problem (CVRP) and other cycle cover problems such as min-max cycle cover and bounded cycle cover. We show that a greedy algorithm followed by a post-processing step yields a $$(2 + \frac{2}{7})$$ ( 2 + 2 7 ) -approximation for this problem by comparing the solution to a polymatroid relaxation. We also show that the analysis of our algorithm is tight and provide a $$2 + \epsilon $$ 2 + ϵ lower bound for the relaxation.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


1995 ◽  
Vol 11 (4) ◽  
pp. 389-396 ◽  
Author(s):  
Hong Wang

2007 ◽  
Vol 307 (11-12) ◽  
pp. 1493-1498 ◽  
Author(s):  
Yoshimi Egawa ◽  
Hikoe Enomoto ◽  
Stanislav Jendrol ◽  
Katsuhiro Ota ◽  
Ingo Schiermeyer

2003 ◽  
Vol 42 (4) ◽  
pp. 276-296 ◽  
Author(s):  
Yoshiyasu Ishigami ◽  
Tao Jiang

2014 ◽  
Vol 79 (4) ◽  
pp. 249-266
Author(s):  
Jørgen Bang-Jensen ◽  
Stéphane Bessy

10.37236/415 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Charles Delorme ◽  
Guillermo Pineda-Villavicencio

The Moore bound constitutes both an upper bound on the order of a graph of maximum degree $d$ and diameter $D=k$ and a lower bound on the order of a graph of minimum degree $d$ and odd girth $g=2k+1$. Graphs missing or exceeding the Moore bound by $\epsilon$ are called graphs with defect or excess $\epsilon$, respectively. While Moore graphs (graphs with $\epsilon=0$) and graphs with defect or excess 1 have been characterized almost completely, graphs with defect or excess 2 represent a wide unexplored area. Graphs with defect (excess) 2 satisfy the equation $G_{d,k}(A) = J_n + B$ ($G_{d,k}(A) = J_n - B$), where $A$ denotes the adjacency matrix of the graph in question, $n$ its order, $J_n$ the $n\times n$ matrix whose entries are all 1's, $B$ the adjacency matrix of a union of vertex-disjoint cycles, and $G_{d,k}(x)$ a polynomial with integer coefficients such that the matrix $G_{d,k}(A)$ gives the number of paths of length at most $k$ joining each pair of vertices in the graph. In particular, if $B$ is the adjacency matrix of a cycle of order $n$ we call the corresponding graphs graphs with cyclic defect or excess; these graphs are the subject of our attention in this paper. We prove the non-existence of infinitely many such graphs. As the highlight of the paper we provide the asymptotic upper bound of $O(\frac{64}3d^{3/2})$ for the number of graphs of odd degree $d\ge3$ and cyclic defect or excess. This bound is in fact quite generous, and as a way of illustration, we show the non-existence of some families of graphs of odd degree $d\ge3$ and cyclic defect or excess. Actually, we conjecture that, apart from the Möbius ladder on 8 vertices, no non-trivial graph of any degree $\ge 3$ and cyclic defect or excess exists.


10.37236/6921 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Julien Bensmail ◽  
Ararat Harutyunyan ◽  
Ngoc Khang Le ◽  
Binlong Li ◽  
Nicolas Lichiardopol

In this paper, we study the question of finding a set of $k$ vertex-disjoint cycles (resp. directed cycles) of distinct lengths in a given graph (resp. digraph). In the context of undirected graphs, we prove that, for every $k \geq 1$, every graph with minimum degree at least $\frac{k^2+5k-2}{2}$ has $k$ vertex-disjoint cycles of different lengths, where the degree bound is best possible. We also consider other cases such as when the graph is triangle-free, or the $k$ cycles are required to have different lengths modulo some value $r$. In the context of directed graphs, we consider a conjecture of Lichiardopol concerning the least minimum out-degree required for a digraph to have $k$ vertex-disjoint directed cycles of different lengths. We verify this conjecture for tournaments, and, by using the probabilistic method, for some regular digraphs and digraphs of small order.


10.37236/314 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Francesco Belardo ◽  
Qiongxiang Huang ◽  
Enzo M. Li Marzi

A dumbbell graph, denoted by $D_{a,b,c}$, is a bicyclic graph consisting of two vertex-disjoint cycles $C_a$, $C_b$ and a path $P_{c+3}$ ($c \geq -1$) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of $D_{a,b,0}$ (without cycles $C_4$) with $\gcd(a,b)\geq 3$, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that $D_{a,b,0}$ with $3 \leq \gcd(a,b) < a$ or $\gcd(a,b)=a$ and $b\neq 3a$ is determined by the spectrum. For $b=3a$, we determine the unique graph cospectral with $D_{a,3a,0}$. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750062
Author(s):  
Jyhmin Kuo ◽  
Hung-Lin Fu

A set of vertices of a graph whose removal leaves an acyclic graph is referred as a decycling set, or a feedback vertex set, of the graph. The minimum cardinality of a decycling set of a graph [Formula: see text] is referred to as the decycling number of [Formula: see text]. For [Formula: see text], the generalized de Bruijn digraph [Formula: see text] is defined by congruence equations as follows: [Formula: see text] and [Formula: see text]. In this paper, we give a systematic method to find a decycling set of [Formula: see text] and give a new upper bound that improve the best known results. By counting the number of vertex-disjoint cycles with the idea of constrained necklaces, we obtain new lower bounds on the decycling number of generalized de Bruijn digraphs.


Sign in / Sign up

Export Citation Format

Share Document