scholarly journals Subthalamic deep brain stimulation versus best medical therapy for l-dopa responsive pain in Parkinson’s disease

Pain ◽  
2013 ◽  
Vol 154 (8) ◽  
pp. 1477-1479 ◽  
Author(s):  
Oguzkan Sürücü ◽  
Heide Baumann-Vogel ◽  
Mechtild Uhl ◽  
Lukas L. Imbach ◽  
Christian R. Baumann
2019 ◽  
Vol 116 (52) ◽  
pp. 26259-26265 ◽  
Author(s):  
Jerrold L. Vitek ◽  
Luke A. Johnson

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder affecting over 10 million people worldwide. In the 1930s and 1940s there was little understanding regarding what caused PD or how to treat it. In a desperate attempt to improve patients’ lives different regions of the neuraxis were ablated. Morbidity and mortality were common, but some patients’ motor signs improved with lesions involving the basal ganglia or thalamus. With the discovery ofl-dopa the advent of medical therapy began and surgical approaches became less frequent. It soon became apparent, however, that medical therapy was associated with side effects in the form of drug-induced dyskinesia and motor fluctuations and surgical therapies reemerged. Fortunately, during this time studies in monkeys had begun to lay the groundwork to understand the functional organization of the basal ganglia, and with the discovery of the neurotoxin MPTP a monkey model of PD had been developed. Using this model scientists were characterizing the physiological changes that occurred in the basal ganglia in PD and models of basal ganglia function and dysfunction were proposed. This work provided the rationale for the return of pallidotomy, and subsequently deep brain stimulation procedures. In this paper we describe the evolution of these monkey studies, how they provided a greater understanding of the pathophysiology underlying the development of PD and provided the rationale for surgical procedures, the search to understand mechanisms of DBS, and how these studies have been instrumental in understanding PD and advancing the development of surgical therapies for its treatment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gerson Suarez-Cedeno ◽  
Jessika Suescun ◽  
Mya C. Schiess

Neuromodulation of subcortical areas of the brain as therapy to reduce Parkinsonian motor symptoms was developed in the mid-twentieth century and went through many technical and scientific advances that established specific targets and stimulation parameters. Deep Brain Stimulation (DBS) was approved by the FDA in 2002 as neuromodulation therapy for advanced Parkinson’s disease, prompting several randomized controlled trials that confirmed its safety and effectiveness. The implantation of tens of thousands of patients in North America and Europe ignited research into its potential role in early disease stages and the therapeutic benefit of DBS compared to best medical therapy. In 2013 the EARLY-STIM trial provided Class I evidence for the use of DBS earlier in Parkinson’s disease. This finding led to the most recent FDA approval in patients with at least 4 years of disease duration and 4 months of motor complications as an adjunct therapy for patients not adequately controlled with medications. This following review highlights the historical development and advances made overtime in DBS implantation, the current application, and the challenges that come with it.


Sign in / Sign up

Export Citation Format

Share Document