Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic

2011 ◽  
Vol 299 (3-4) ◽  
pp. 507-528 ◽  
Author(s):  
Christian Linnert ◽  
Jörg Mutterlose ◽  
Jens O. Herrle
2017 ◽  
Vol 122 (12) ◽  
pp. 9603-9626 ◽  
Author(s):  
Chiara Macchiavelli ◽  
Jaume Vergés ◽  
Antonio Schettino ◽  
Manel Fernàndez ◽  
Eugenio Turco ◽  
...  

2000 ◽  
Vol 19 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Roberto Bao ◽  
Henko De Stigter ◽  
Tjeerd C. E. Van Weering

Abstract. Continental slopes are presumed key areas for deposition of organic carbon exported from the shelf. Analysis of across-slope differences in diatom and silicoflagellate fluxes recorded in bottom sediments of the Goban Spur margin, a typical North Atlantic slope environment, was carried out to test if they can provide information on the magnitude of advection of material from the shelf into deeper waters. Total diatom and silicoflagellate accumulation rates showed strong across-slope differences. Minimum values are recorded at the shelf break where maximum surface productivity conditions occur while the deeper sampling stations record fluxes as high as 183×106 valves cm–2 ka–1. While high diatom fluxes show a clear correspondence with the activity of a permanent bottom nepheloid layer operating in the region, they do not correlate with productivity patterns observed in the water column. Diatom assemblages are mainly composed of Chaetoceros resting spores and Thalassionema nitzschioides (Grunow) Grunow ex Hustedt, typical indicators of spring bloom conditions in the area. The absence of clear across-slope trends in the diatom assemblages is interpreted as the effect of random mixing driven by the strong hydrodynamic regime provoked by the activity of the bottom nepheloid layer. The dominance of Chaetoceros resting spores across the slope is related to important exportation of shelf-derived production. However, due to the broad ecological tolerances of the main taxa composing the diatom assemblages, they do not allow precise estimations on the magnitude of the primary vertical flux vs. the secondary lateral flux in this slope environment. Use of the tychoplanktonic and benthic diatoms, which are restricted to the neritic realm, allows only the estimation of the minimum amount of shelf-derived diatoms reaching the slope sediments (at least 13% of the total diatom assemblage for the upper slope area of the Goban Spur). This study shows that major limitations exist for the use of diatoms preserved in surface sediments of this area as tracers of shelf-derived production transported to the continental slope.


2019 ◽  
Author(s):  
◽  
Shannon Haynes

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Cooling during the last 15 million years of the Cretaceous is widely believed to have resulted in a reorganization of ocean circulation, with cooler periods being associated with deep ocean convection in high latitude regions (e.g., Robinson et al., 2010; MacLeod et al., 2011; Robinson and Vance, 2012; Jung et al., 2013). Understanding the relationship between climate change and sub-surface ocean circulation patterns, and gaining further insight into how circulation dynamics were influenced by the unique Cretaceous paleobathymetry is crucial to furthering our understanding of global climate dynamics during the Late Cretaceous. To provide further insight into Late Cretaceous ocean circulation we used neodymium isotopes as a tool to infer past ocean circulation patterns. Neodymium was extracted from fossilized fish teeth and bone fragments from bulk rock samples at 26 different sites (4 Pacific, 12 South Atlantic, 3 North Atlantic, 3 proto-Indian Ocean). We present two regional studies that focus on Campanian (84-72 Ma) and Maastrichtian (72-66 Ma) circulation patterns in the Pacific (Chapter 2) and South Atlantic (Chapter 3) Oceans. These chapters argue that, by the end of the Cretaceous, climate had cooled enough to support high latitude convection but also that circulation patterns were tightly controlled by bathymetry. To investigate the global implications of these two regional studies we also present preliminary neodymium isotopic data from several sites in the North Atlantic and proto-Indian Ocean (Chapter 4). Further, neodymium isotopic trends were compared to climate model simulations as well as to previously published neodymium, carbon, and oxygen isotopic records.


Sign in / Sign up

Export Citation Format

Share Document