surface productivity
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 0)

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 373
Author(s):  
Matthew L. Niemiller ◽  
Kurt Helf ◽  
Rickard S. Toomey

The Mammoth Cave System in the Interior Low Plateau karst region in central Kentucky, USA is a global hotspot of cave-limited biodiversity, particularly terrestrial species. We searched the literature, museum accessions, and database records to compile an updated list of troglobiotic and stygobiotic species for the Mammoth Cave System and compare our list with previously published checklists. Our list of cave-limited fauna totals 49 species, with 32 troglobionts and 17 stygobionts. Seven species are endemic to the Mammoth Cave System and other small caves in Mammoth Cave National Park. The Mammoth Cave System is the type locality for 33 cave-limited species. The exceptional diversity at Mammoth Cave is likely related to several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures, high surface productivity, and a long history of exploration and study. Nearly 80% of the cave-limited fauna is of conservation concern, many of which are at an elevated risk of extinction because of small ranges, few occurrences, and several potential threats.


2021 ◽  
Vol 17 (7) ◽  
pp. 20200666
Author(s):  
Hideyuki Doi ◽  
Moriaki Yasuhara ◽  
Masayuki Ushio

The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep‐sea species richness in the contexts of the species‐energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 10 3 –10 4 -year time scales. The temperature–richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.


2021 ◽  
Author(s):  
Sven Pallacks ◽  
Patrizia Ziveri ◽  
Belen Martrat ◽  
Graham P. Mortyn ◽  
Michael Grelaud ◽  
...  

<p>The increase in anthropogenic induced warming over the last two centuries is impacting marine environments. Marine planktic calcifying organisms interact sensitively to changes in sea surface temperatures (SST), and the food web structure. Here, we study two high resolution multicore records from two western Mediterranean Sea regions (Alboran and Balearic basins), areas highly affected by both natural climate change and anthropogenic warming. Cores cover the time interval from the Medieval Climate Anomaly (MCA) to present. Reconstructed SSTs are in good agreement with other results, tracing temperature changes through the Common Era, and show a clear 20<sup>th</sup> century warming signal. Both cores show opposite abundance fluctuations of planktic foraminiferal species (Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides) a common group of marine calcifying zooplankton. The abundance ratios between these species show the switch between winter / spring surface productivity and deep winter mixing in the Balearic basin. In the Alboran Sea, Globigerina bulloides and Globorotalia inflata instead respond to local upwelling dynamics. In the pre-industrial era, changes in planktic foraminiferal productivity and species composition can be explained mainly by the natural variability of North Atlantic Oscillation (NAO), and, to lesser extent, by the Atlantic Multidecadal Oscillation (AMO). In the industrial era, starting from about 1800 Common Era (CE), this variability is affected by anthropogenic surface warming, leading to enhanced vertical stratification of the upper water column, and resulting in a decrease of surface productivity at both sites. We found that natural planktic foraminiferal population dynamics in the western Mediterranean is already altered by enhanced anthropogenic impact in the industrial era, suggesting that in this region natural cycles and influences are being overprinted by human influences.</p>


2021 ◽  
Author(s):  
Teesha Mathew

<p><span>The central Arabian Sea (CAS) is productive during both the summer and winter monsoons owing to different physical processes. We analysed four years (2013-2016) record of chlorophyll and dissolved oxygen (DO) concentration from a Bio-Argo float deployed in this region. Though the surface blooms were observed during both the monsoons and sub-surface chlorophyll was also persistently observed, the intensity and duration of the bloom have been decreasing over the past few years. Also, the winter blooms were more prominent compared to the summer bloom in the study region. Our analysis shows that the observed inter-annual variability in the summer bloom can be attributed to the variability in wind speed, oceanic stratification and advection of nutrient rich water from the western Arabian Sea. During both the monsoons, stratification played an important role in reducing the productivity in recent years. We also found that during the winter monsoon, the upwelling Rossby wave propagating from the west coast of India influenced productivity as north as 15ºN. The chlorophyll data from Bio-Argo float shows that the total surface chlorophyll concentration has been decreasing during the study period. Consequently the DO concentration has also been </span><span>decreased</span><span>. </span><span>An increase in the deeper water is speculated to be due to the </span><span> decrease in surface productivity. This is in contradiction to the previous studies on intensification of Arabian Sea OMZ. Also, in the event of recent reports on decreasing trend in productivity in the Arabian Sea, the present study provides new insights on the possible effect of declining productivity on the DO concentration under the climate change regime.</span></p>


2021 ◽  
Author(s):  
Jaime Yesid Suarez Ibarra ◽  
Cristiane Fraga Frozza ◽  
Sandro Monticelli Petró ◽  
Pamela de Lara Palhano ◽  
Maria Alejandra Gómez Pivel

<p>Paleoceanographic studies reconstructing surface paleoproductivity and benthic conditions allow us to measure the effectiveness of the biological pump, an important mechanism in the global climate system. In order to assess surface productivity changes and their effect on the sea-floor environment, a multiproxy paleoceanographic analysis was conducted on the core SAT-048A (1542 m.b.s.l.), recovered from the continental slope of the southernmost Brazilian continental margin, western South Atlantic. We assessed sea surface productivity using different planktonic foraminiferal proxies: (1) the relative abundances of the species <em>Globigerina bulloides</em> and <em>Globigerinita glutinata</em> and (2) the δ<sup>13</sup>C signal of shells of the species <em>Globigerinoides ruber ruber</em>. To assess the organic matter (OM) flux to the seafloor, the foraminiferal planktonic:benthic ratio and the δ<sup>13</sup>C signal of shells of the benthic foraminifer <em>Uvigerina</em> spp. were used. To study dissolution effects occurring at the sea-floor, the Fragmentation Intensity (i.e., the proportion of fragments and broken foraminiferal shells), the number of planktonic foraminiferal tests per gram of dry sediment, and the CaCO<sub>3</sub> and Sand contents of the sediment were measured. Superimposed on the climate-induced changes related to the last glacial-interglacial transition, the reconstruction indicates paleoproductivity changes synchronized with the precessional cycle. From the reconstructed data, it was possible to identify the glacial and postglacial stages: surface productivity, flux to the seafloor, and dissolution rates of planktonic foraminiferal tests where high during the glacial and low during the postglacial. Furthermore, within the glacial, enhanced productivity was associated with higher insolation values, which can be explained by increased NE summer winds that strengthened the Brazil Current transport and, in turn, promoted meandering and upwelling of the nutrient rich South Atlantic Central Water. Changes in the Atlantic Meridional Overturning Circulation and the reorganization of bottom water masses may change the CO<sub>3</sub><sup>2-</sup> saturation levels and, consequently, influence carbonate preservation. However, the δ<sup>13</sup>C values from shells of <em>Uvigerina</em> spp. are different from present-day δ<sup>13</sup>C values from dissolved inorganic carbon for the Upper Circumpolar Deep Water and the North Atlantic Deep Water, which is likely linked to varying OM fluxes. Future studies (e.g., εNd in benthic Foraminifera) must quantify the effect of the reorganization of the bottom water masses on the dissolution of the planktonic foraminiferal tests, to better understand the effect of the biological pump removing carbon from the seawater and its subsequent sequestration in the seafloor sediments.</p>


2020 ◽  
Author(s):  
Ruifang Ma ◽  
Sophie Sépulcre ◽  
Laetitia Licari ◽  
Frédéric Haurine ◽  
Franck Bassinot ◽  
...  

Abstract. We have measured Cd / Ca ratios of several benthic foraminiferal species and studied benthic foraminiferal assemblages on two cores from the northern Indian Ocean (Arabian Sea and northern Bay of Bengal, BoB), in order to reconstruct variations in intermediate water circulation and paleo-nutrient content since the last deglaciation. Intermediate water Cdw records estimated from the benthic Cd / Ca reflect past changes in surface productivity and/or intermediate-bottom water ventilation. The benthic foraminiferal assemblages are consistent with the geochemical data. These results suggest that during the last deglaciation, the Heinrich Stadial 1 and Younger Dryas (HS1 and YD, respectively) millennial-scale events were marked by a decrease in Cdw values, indicating an enhanced ventilation of intermediate-bottom water masses. Benthic foraminifer assemblages indicate that surface primary productivity was low during the early Holocene (from 10 to 6 cal kyr BP), resulting in low intermediate water Cdw at both sites. From ~ 5.2 to 2.4 cal kyr BP, the benthic foraminiferal assemblages indicate meso- to eutrophic intermediate water conditions, which correspond to high surface productivity. This is consistent with a significant increase in the intermediate water Cdw in the southeastern Arabian Sea and the northeastern BoB. The comparison of intermediate water Cdw records with previous reconstructions of past Indian monsoon evolution during the Holocene suggests a direct control of intermediate water Cdw by monsoon-induced changes in upper water stratification and surface primary productivity.


2020 ◽  
Vol 41 (2) ◽  
pp. 191-203
Author(s):  
Raquel Bados ◽  
Eduardo Tolosana ◽  
Luis Saúl Esteban

Biomass collection could contribute to the reduction of wildfire prevention costs by obtaining solid biofuels from shrublands that pose a high fire risk, using mechanical harvesting methods that have not been sufficiently tested in shrub formations. The objective of this study is to evaluate the performance of a harvester-baler system (Biobaler WB55) for collecting rockrose (Cistus laurifolius L.) shrublands biomass, to asses the influence of the cutting rotor tool (blades or hammers) on weight and surface productivities and operating costs, as well as to determine the influence of the standing shrub biomass load on productivity and biomass collection efficiency.A 31-hour test was conducted on 21 ha of a typical Mediterranean shrubland in the centre of Spain. Data collection included time study, daily collected area, fuel consumption and bale measurements. Samples of fresh biomass from bales were collected for the determination of moisture content. The average collected biomass was 2.3 tDM·ha-1 (tonnes of dry matter per hectare), with an average productivity of 1.6 tDM·PMH-1 and an average yield of 0.7 ha·PMH-1. Better results were obtained with blades than with hammers in the cutting rotor tool (35% more collected biomass, 42% higher weight productivity, 61% higher collection efficiency and 14% greater surface productivity). The average harvest-baling costs with blades were estimated at 99.5 €∙PMH-1, 142.1 €∙ha-1 and 53.9 €∙tDM-1 (34.0 €∙tWM-1, € per tonne of wet matter), and with hammers 91.5 €∙PMH-1, 152.5 €∙ha-1 and 81.4 €∙tDM-1 (51.1 €∙tWM-1).The analysed harvester-baler was operated without difficulty in this type of vegetation and was able to collect up to 31% of the shrub biomass load in the study area. The amount of uncollected biomass and the decrease in biomass collection efficiency, as shrub biomass load increases, suggest that possible mechanical improvements are needed to improve biomass collection efficiency.


Author(s):  
David C. Culver ◽  
Tanja Pipan

Globally, for troglobionts, southern Europe, especially the Dinaric karst, and the Canary Islands are regions of high richness. For stygobionts, southern Europe, especially the Dinaric karst, is a hotspot. Other sites are typically chemoautotrophic and/or phreatic. In Europe and North America, there appears to be a ridge of high troglobiotic and stygobiotic diversity in southern Europe and the southeast United States that corresponds to an area of long-term high surface productivity. In Europe, local diversity is a small component of regional stygobiotic diversity and the importance of spatial heterogeneity, historical climate stability, and productivity are both scale and spatially dependent. Habitat availability seems especially important at smaller scales. The analogy with islands in ecological time is most appropriate at scales smaller than caves, such as seeps or epikarst drips, and the analogy with caves in evolutionary time is more appropriate at larger scales, such as karst basins or contiguous karst areas.


Sign in / Sign up

Export Citation Format

Share Document