Temperature-controlled culture experiments with primary polyps of coral Acropora digitifera: Calcification rate variations and skeletal Sr/Ca, Mg/Ca, and Na/Ca ratios

2017 ◽  
Vol 484 ◽  
pp. 129-135 ◽  
Author(s):  
Tomoko Bell ◽  
Kozue Nishida ◽  
Kei Ishikawa ◽  
Atsushi Suzuki ◽  
Takashi Nakamura ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10562
Author(s):  
Cristiana Manullang ◽  
Intan Herwindra Millyaningrum ◽  
Akira Iguchi ◽  
Aika Miyagi ◽  
Yasuaki Tanaka ◽  
...  

Anthropogenic emission of CO2 into the atmosphere has been increasing exponentially, causing ocean acidification (OA) and ocean warming (OW). The “business-as-usual” scenario predicts that the atmospheric concentration of CO2 may exceed 1,000 µatm and seawater temperature may increase by up to 3 °C by the end of the 21st century. Increases in OA and OW may negatively affect the growth and survival of reef corals. In the present study, we separately examined the effects of OW and OA on the corals Acropora digitifera and Montipora digitata, which are dominant coral species occurring along the Ryukyu Archipelago, Japan, at three temperatures (28 °C, 30 °C, and 32 °C) and following four pCO2 treatments (400, 600, 800, and 1,000 µatm) in aquarium experiments. In the OW experiment, the calcification rate (p = 0.02), endosymbiont density, and maximum photosynthetic efficiency (Fv/Fm) (both p < 0.0001) decreased significantly at the highest temperature (32 °C) compared to those at the lower temperatures (28 °C and 30 °C) in both species. In the OA experiment, the calcification rate decreased significantly as pCO2 increased (p < 0.0001), whereas endosymbiont density, chlorophyll content, and Fv/Fm were not affected. The calcification rate of A. digitifera showed greater decreases from 30 °C to 32 °C than that of M. digitata. The calcification of the two species responded differently to OW and OA. These results suggest that A. digitifera is more sensitive to OW than M. digitata, whereas M. digitata is more sensitive to OA. Thus, differences in the sensitivity of the two coral species to OW and OA might be attributed to differences in the endosymbiont species and high calcification rates, respectively.


2013 ◽  
Vol 10 (11) ◽  
pp. 6807-6814 ◽  
Author(s):  
S. Ohki ◽  
T. Irie ◽  
M. Inoue ◽  
K. Shinmen ◽  
H. Kawahata ◽  
...  

Abstract. Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2–0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (± 5% pCO2), to assess the impact of ocean acidification on the calcification of recently settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of ~100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that: (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e., broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.


2013 ◽  
Vol 10 (4) ◽  
pp. 7013-7030 ◽  
Author(s):  
S. Ohki ◽  
T. Irie ◽  
M. Inoue ◽  
K. Shinmen ◽  
H. Kawahata ◽  
...  

Abstract. Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2–0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (&amp;pm;5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.


1992 ◽  
Vol 2 (5) ◽  
pp. 503-510 ◽  
Author(s):  
F. Carmona ◽  
E. Valot ◽  
L. Servant ◽  
M. Ricci

Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Sign in / Sign up

Export Citation Format

Share Document