Failure Analysis Case Study of a 1.5 Meter Space Flex Harness

Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.

Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Author(s):  
Frank Altmann ◽  
Christian Grosse ◽  
Falk Naumann ◽  
Jens Beyersdorfer ◽  
Tony Veches

Abstract In this paper we will demonstrate new approaches for failure analysis of memory devices with multiple stacked dies and TSV interconnects. Therefore, TSV specific failure modes are studied on daisy chain test samples. Two analysis flows for defect localization implementing Electron Beam Induced Current (EBAC) imaging and Lock-in-Thermography (LIT) as well as adapted Focused Ion Beam (FIB) preparation and defect characterization by electron microscopy will be discussed. The most challenging failure mode is an electrical short at the TSV sidewall isolation with sub-micrometer dimensions. It is shown that the leakage path to a certain TSV within the stack can firstly be located by applying LIT to a metallographic cross section and secondly pinpointing by FIB/SEM cross-sectioning. In order to evaluate the potential of non-destructive determination of the lateral defect position, as well as the defect depth from only one LIT measurement, 2D thermal simulations of TSV stacks with artificial leakages are performed calculating the phase shift values per die level.


2021 ◽  
pp. 531-556
Author(s):  
A. Hudgins ◽  
C. Roepke ◽  
B. James ◽  
B. Kondori ◽  
B. Whitley

Abstract This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6400
Author(s):  
Sara Antomarioni ◽  
Marjorie Maria Bellinello ◽  
Maurizio Bevilacqua ◽  
Filippo Emanuele Ciarapica ◽  
Renan Favarão da Silva ◽  
...  

Power plants are required to supply the electric demand efficiently, and appropriate failure analysis is necessary for ensuring their reliability. This paper proposes a framework to extend the failure analysis: indeed, the outcomes traditionally carried out through techniques such as the Failure Mode and Effects Analysis (FMEA) are elaborated through data-driven methods. In detail, the Association Rule Mining (ARM) is applied in order to define the relationships among failure modes and related characteristics that are likely to occur concurrently. The Social Network Analysis (SNA) is then used to represent and analyze these relationships. The main novelty of this work is represented by support in the maintenance management process based not only on the traditional failure analysis but also on a data-driven approach. Moreover, the visual representation of the results provides valuable support in terms of comprehension of the context to implement appropriate actions. The proposed approach is applied to the case study of a hydroelectric power plant, using real-life data.


Author(s):  
Dennis B. Brickman

Abstract A failure modes and effects testing program was conducted to analyze the cause of a mid-size commercial walk-behind lawn mower accident in which the operator’s foot came in contact with the rotating blade. Systematic analysis showed that the accident was caused by improper mower service and operator misuse of the mower. Testing results reveal that an alternative design proposal does not preclude this random event. Accident prevention countermeasures are explored.


Author(s):  
Hei-Ruey Harry Jen ◽  
Gerald S. D’Urso ◽  
Harold Andrews

Abstract When a failure analysis (FA) involves a multiple layer structure separated by a polymeric material such as Benzocyclobutene (BCB), in a plastic package, it becomes a very challenging task to find out where the failure site is and how it failed. This is due to the fact that the chemical de-processing procedure removes BCB as well as the plastic molding compound. This paper outlines the studies carried out to determine the failure site and the root cause of the failure mechanism in a multilayer circuit and the steps taken to fix the problems. The methodology and results of this study are applicable to many other types of circuits.


2020 ◽  
Vol 10 (22) ◽  
pp. 8040
Author(s):  
Marjorie M. Bellinello ◽  
Miguel A. C. Michalski ◽  
Arthur H. A. Melani ◽  
Adherbal Caminada Netto ◽  
Carlos A. Murad ◽  
...  

Decision-making regarding maintenance planning has become increasingly critical. In view of the need for more assertive decisions, methods, and tools based on failure analysis, performance indicators, and risk analysis have obtained great visibility. One of these methods, the Variation and Mode Effect Analysis (VMEA), is a statistically based method that analyses the effect of different sources of variations on a system. One great advantage of VMEA is to facilitate the understanding of these variations and to highlight the system areas in which improvement efforts should be directed. However, like many knowledge-based methods, the inherent epistemic uncertainty can be propagated to its result, influencing following decisions. To minimize this issue, this work proposes the novel combination of VMEA with Paraconsistent Annotated Logic (PAL), a technique that withdraws the principle of noncontradiction, allowing better decision-making when contradictory opinions are present. To demonstrate the method applicability, a case study analyzing a hydrogenerator components is presented. Results show how the proposed method is capable of indicating which are the failure modes that most affect the analyzed system, as well as which variables must be monitored so that the symptoms related to each failure mode can be observed, helping in decision-making regarding maintenance planning.


Author(s):  
Peter Jacob ◽  
Iwan Jerjen ◽  
Giovanni Nicoletti

Abstract Since new packaging technologies came up, sensitive failure modes, which were difficult to prove, increased. In many cases, an interaction of bending properties, thermomechanical stress and the material compounds used, cause intermittent failures related to electrical connections. Since any decapsulation might falsify analysis results, non-destructive characterization approaches are of utmost importance for future failure analysis. By means of a typical case study, the capabilities and limitations of a highly developed X-ray tool in such application has been outlined as well as the complexity of root cause findings.


Author(s):  
Hsien-Wen Liu ◽  
King-Ting Chiang ◽  
Tao-Chi Liu ◽  
Ming-Lun Chang ◽  
Jandel Lin

Abstract Applications of Micro-Electro-Mechanical Systems (MEMS) sensors have developed rapidly in the last decade, increasing the need of Failure Analysis (FA) to characterize abnormalities and to identify failure modes of various types of MEMS devices. One of the greatest challenges is removal of the sealing cap from the MEMS device without any impact to the moveable sensing elements. A novel non-destructive technique has been successfully developed using KOH wet chemical etching followed by application of ex-situ hand sticking to deprocess the sealing cap from an accelerometer device. This new approach provides a quick and reliable way to remove the sealing cap from a MEMS device.


Author(s):  
Charlie B. DeStefano ◽  
David C. Jensen

In a time when major technological advancements are happening at incredible rates and where demands for next-generation systems are constantly growing, advancements in failure analysis methods must constantly be developed, as well. Performance and safety are always top concerns for high-risk complex systems, and therefore, it is important for new failure analysis methods to be explored in order to obtain more useful and comprehensive failure information as early as possible, particularly during early design phases when detailed models might not yet exist. Therefore, this paper proposes a qualitative, function-based failure analysis method for early design phases that is capable of not only analyzing potential failure modes for physical components, but also for any manufacturing processes that might cause failures, as well. In this paper, the proposed method is first described in general and then applied in a case study of a proposed design for a nanochannel DNA sequencing device. Lastly, this paper discusses how more advanced and detailed analyses can be incorporated into this approach during later design phases, when more failure information becomes available.


Sign in / Sign up

Export Citation Format

Share Document