acropora digitifera
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Kojin Tsuchiya ◽  
Yuna Zayasu ◽  
Yuichi Nakajima ◽  
Nana Arakaki ◽  
Go Suzuki ◽  
...  

Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1,000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, although precise, detailed genetic attributes of corals are still largely unknown. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands, for which a complete genome is available. With ~24x sequencing coverage of entire genomes of 303 colonies collected at 21 locations, we identified more than four million genome-wide SNPs. While population structure analyses suggested weak genetic differentiation among sampled locations, the most southwestern location (the west end of the Yaeyama Islands) was genetically similar to the northernmost location (the Tanegashima Islands), separated by >1,000 km. Although examination of a migration network found a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, highlighting the importance of local scale assessments for effective coral restoration and management.


Author(s):  
Chuya Shinzato ◽  
Takeshi Takeuchi ◽  
Yuki Yoshioka ◽  
Ipputa Tada ◽  
Miyuki Kanda ◽  
...  

Abstract Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified sixty Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites, and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Che Din Mohd Safuan ◽  
Muhammad Arif Samshuri ◽  
Siti Nurtahirah Jaafar ◽  
Chun Hong Tan ◽  
Zainudin Bachok

Heat stress disturbs the mutualistic relationship between the hard corals and the symbiotic algae, which cause coral bleaching. A wide array of biochemical parameters is used to demonstrate the phenomenon. This study exposed a shallow-water hard coral, Acropora digitifera, to a series of elevated temperatures over time while the interaction between Symbiodiniaceae (SD) density, antioxidants activities, fatty acid (FA) composition, and putative FA health indicators was evaluated. Heat stress caused a substantial loss in SD densities, consequently regulated the antioxidant activities and caused significant changes in FA composition. There was a lack of evidence showing A. digitifera experienced oxidative stress; nonetheless, a significant decrease of monounsaturated fatty acid as (MUFA) and polyunsaturated fatty acid (PUFA) during the thermally induced experiment demonstrated that corals utilize their unsaturated FA as a final barrier or as a repair system against oxidative damage once the antioxidant enzyme cannot cope with stress condition. The lower ratio of putative FA health indicators [i.e., n-3 LC:n-6 LC, eicosapentaenoic acid (EPA):arachidonic acid (ARA), and docosahexaenoic acid (DHA):ARA] characterized an unhealthy coral. The loss of SD density was significantly correlated with certain PUFA markers [i.e., linolenic acid (18:3n6), 20:5n3, and 22:6n3] and putative FA health indicator (i.e., n-3 LC:n-6 LC, EPA:ARA, and DHA:ARA). These notably imply that the FA linked with the symbiont can be a potential health indicator for assessing the effect of the environmental stressor on coral. This study also revealed the regulation of FAs during stress conditions, especially when heterotrophic feeding is limited. Future studies on FA profiles toward antagonistic or synergistic effects will offer a better understanding of the nature of this relationship under a harsh climate.


Oceans ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 509-529
Author(s):  
Ashani Arulananthan ◽  
Venura Herath ◽  
Sivashanthini Kuganathan ◽  
Anura Upasanta ◽  
Akila Harishchandra

Sri Lanka, an island nation located off the southeast coast of the Indian sub-continent, has an unappreciated diversity of corals and other reef organisms. In particular, knowledge of the status of coral reefs in its northern region has been limited due to 30 years of civil war. From March 2017 to August 2018, we carried out baseline surveys at selected sites on the northern coastline of the Jaffna Peninsula and around the four largest islands in Palk Bay. The mean percentage cover of live coral was 49 ± 7.25% along the northern coast and 27 ± 5.3% on the islands. Bleaching events and intense fishing activities have most likely resulted in the occurrence of dead corals at most sites (coral mortality index > 0.33). However, all sites were characterised by high values of diversity (H’ ≥ 2.3) and evenness (E ≥ 0.8). The diversity index increased significantly with increasing coral cover on the northern coast but showed the opposite trend on the island sites. One hundred and thirteen species of scleractinian corals, representing 16 families and 39 genera, were recorded, as well as seven soft coral genera. Thirty-six of the scleractinian coral species were identified for the first time on the island of Sri Lanka. DNA barcoding using the mitochondrial cytochrome oxidase subunit I gene (COI) was employed to secure genetic confirmation of a few difficult-to-distinguish new records: Acropora aspera, Acropora digitifera, Acropora gemmifera, Montipora flabellata, and Echinopora gemmacea.


2021 ◽  
Vol 8 ◽  
Author(s):  
Adriana Humanes ◽  
Elizabeth A. Beauchamp ◽  
John C. Bythell ◽  
Mitch K. Carl ◽  
Jamie R. Craggs ◽  
...  

Coral cover on tropical reefs has declined during the last three decades due to the combined effects of climate change, destructive fishing, pollution, and land use change. Drastic reductions in greenhouse gas emissions combined with effective coastal management and conservation strategies are essential to slow this decline. Innovative approaches, such as selective breeding for adaptive traits combined with large-scale sexual propagation, are being developed with the aim of pre-adapting reefs to increased ocean warming. However, there are still major gaps in our understanding of the technical and methodological constraints to producing corals for such restoration interventions. Here we propose a framework for selectively breeding corals and rearing them from eggs to 2.5-year old colonies using the coral Acropora digitifera as a model species. We present methods for choosing colonies for selective crossing, enhancing early survivorship in ex situ and in situ nurseries, and outplanting and monitoring colonies on natal reefs. We used a short-term (7-day) temperature stress assay to select parental colonies based on heat tolerance of excised branches. From six parental colonies, we produced 12 distinct crosses, and compared survivorship and growth of colonies transferred to in situ nurseries or outplanted to the reef at different ages. We demonstrate that selectively breeding and rearing coral colonies is technically feasible at small scales and could be upscaled as part of restorative assisted evolution initiatives. Nonetheless, there are still challenges to overcome before selective breeding can be implemented as a viable conservation tool, especially at the post-settlement and outplanting phases. Although interdisciplinary approaches will be needed to overcome many of the challenges identified in this study, selective breeding has the potential to be a viable tool within a reef managers toolbox to support the persistence of selected reefs in the face of climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirill V. Pankov ◽  
Andrew G. McArthur ◽  
David A. Gold ◽  
David R. Nelson ◽  
Jared V. Goldstone ◽  
...  

AbstractThe cytochrome P450 (CYP) superfamily is a diverse and important enzyme family, playing a central role in chemical defense and in synthesis and metabolism of major biological signaling molecules. The CYPomes of four cnidarian genomes (Hydra vulgaris, Acropora digitifera, Aurelia aurita, Nematostella vectensis) were annotated; phylogenetic analyses determined the evolutionary relationships amongst the sequences and with existing metazoan CYPs. 155 functional CYPs were identified and 90 fragments. Genes were from 24 new CYP families and several new subfamilies; genes were in 9 of the 12 established metazoan CYP clans. All species had large expansions of clan 2 diversity, with H. vulgaris having reduced diversity for both clan 3 and mitochondrial clan. We identified potential candidates for xenobiotic metabolism and steroidogenesis. That each genome contained multiple, novel CYP families may reflect the large evolutionary distance within the cnidarians, unique physiology in the cnidarian classes, and/or different ecology of the individual species.


Author(s):  
Exequiel Gabriel S. Dizon ◽  
Jeric P. Da-Anoy ◽  
Melissa S. Roth ◽  
Cecilia Conaco

Abstract Fluorescent proteins (FPs) are reported to play an important role as photoprotectants and antioxidants in corals subjected to stressful conditions. Identifying the various FP genes expressed and FP gene expression patterns under stress in diverse coral species can provide insight into FP function. In this study, we identified 16 putative FP homologues from the transcriptomes of corals with varying susceptibility to elevated temperature, including Acropora digitifera, Favites colemani, Montipora digitata and Seriatopora caliendrum. Each coral expressed a different complement of FP transcripts, which were predicted to have distinct spectral properties. The most diverse and abundant repertoire of FP transcripts, including at least 6 green FPs, were expressed in the temperature-tolerant coral, F. colemani. In comparison, the other corals expressed fewer FP types. Specific FP transcripts exhibited variable expression profiles in coral fragments subjected to 32 ± 1 °C (treatment) or 28 ± 1 °C (control) for up to 72 h, suggesting that distinct FPs may have different roles. Further studies on the expression of the proteins encoded by these FP transcripts, their fluorescence activity, tissue localization, and possible antioxidant properties, are needed to reveal their contribution to thermal stress tolerance in certain species of corals.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Mariko Iijima ◽  
Jun Yasumoto ◽  
Akira Iguchi ◽  
Kiyomi Koiso ◽  
Sayaka Ushigome ◽  
...  

To test the hypothesis that terrestrial runoff affects the functions of calcareous sediments in coral reefs and hampers the development of corals, we analysed calcareous sediments with different levels of bound phosphate, collected from reef areas of Okinawajima, Japan. We confirmed that phosphate bound to calcareous sediments was readily released into ambient seawater, resulting in much higher concentrations of phosphorous in seawater from heavily polluted areas (4.3–19.0 µM as compared with less than 0.096 µM in natural ambient seawater). Additionally, we examined the effect of phosphate released from calcareous sediments on the development of Acropora digitifera coral juveniles. We found that high phosphate concentrations in seawater clearly inhibit the skeletal formation of coral juveniles. Our results demonstrate that calcareous sediments in reef areas play a crucial role in mediating the impact of terrestrial runoff on corals by storing and releasing phosphate in seawater.


2021 ◽  
Author(s):  
Adriana Humanes ◽  
John Bythell ◽  
Elizabeth Beauchamp ◽  
Mitch Carl ◽  
Jamie Craggs ◽  
...  

AbstractCoral cover on tropical reefs has declined during the last three decades due to the combined effects of climate change, destructive fishing, pollution, and land use change. Drastic reductions in greenhouse gas emissions combined with effective coastal management and conservation strategies are essential to slow this decline. Innovative approaches, such as selective breeding for adaptive traits combined with large-scale sexual propagation, are being developed with the aim of pre-adapting reefs to increased ocean warming. However, there are still major gaps in our understanding of the technical and methodological constraints to producing corals for such restoration interventions. Here we propose a framework for selectively breeding corals and rearing them from eggs to 2.5-year old colonies using the coral Acropora digitifera as a model species. We present methods for choosing colonies for selective crossing, enhancing early survivorship in ex situ and in situ nurseries, and outplanting and monitoring colonies on natal reefs. We used a short-term (7-day) temperature stress assay to select parental colonies based on heat tolerance of excised branches. From six parental colonies, we produced 12 distinct crosses, and compared survivorship and growth of colonies transferred to in situ nurseries or outplanted to the reef at different ages. We demonstrate that selectively breeding and rearing coral colonies is technically feasible at small scales and could be upscaled as part of restorative assisted evolution initiatives. Nonetheless, there are still challenges to overcome before selective breeding can be implemented as a viable conservation tool, especially at the post-settlement and outplanting phases. Although interdisciplinary approaches will be needed to overcome many of the challenges identified in this study, selective breeding has the potential to be a viable tool within reef managers’ toolbox to support the persistence of selected reefs in the face of climate change.


Author(s):  
Alejandro Reyes-Bermudez ◽  
Michio Hidaka ◽  
andAlexander Mikheyev

Abstract Due to their pluripotent nature and unlimited cell renewal, stem cells have been proposed as an ideal material for establishing long-term cnidarian cell cultures. However, the lack of unifying principles associated with "stemness" across the phylum complicates stem cells' identification and isolation. Here, we for the first time report gene expression profiles for cultured coral cells, focusing on regulatory gene networks underlying pluripotency and differentiation. Cultures were initiated from Acropora digitifera tip fragments, the fastest growing tissue in Acropora. Overall, in vitro transcription resembled early larvae, over-expressing orthologs of pre-metazoan and Hydra stem cell markers, and transcripts with roles in cell division, migration, and differentiation. Our results suggest the presence of pluripotent cell-types in cultures and indicate the existence of ancestral genome regulatory modules underlying pluripotency and cell differentiation in cnidaria. Cultured cells appear to be synthesizing protein, differentiating, and proliferating.


Sign in / Sign up

Export Citation Format

Share Document