Adaptive Quality Equalizing: High-performance load balancing for parallel branch-and-bound across applications and computing systems

2004 ◽  
Vol 30 (7) ◽  
pp. 867-881
Author(s):  
Nihar R. Mahapatra ◽  
Shantanu Dutt
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yana Golubeva ◽  
Yury Orlov ◽  
Mikhail Posypkin

Abstract The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer’s interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.


2013 ◽  
Vol 9 (3) ◽  
pp. 1091-1098 ◽  
Author(s):  
Sukalyan Goswami ◽  
Ajanta De Sarkar

Grid computing or computational grid has become a vast research field in academics. It is a promising platform that provides resource sharing through multi-institutional virtual organizations for dynamic problem solving. Such platforms are much more cost-effective than traditional high performance computing systems. Due to the provision of scalability of resources, these days grid computing has become popular in industry as well. However, computational grid has different constraints and requirements to those of traditional high performance computing systems. In order to fully exploit such grid systems, resource management and scheduling are key challenges, where issues of task allocation and load balancing represent a common problem for most grid systems as because the load scenarios of individual grid resources are dynamic in nature. The objective of this paper is to review different existing load balancing algorithms or techniques applicable in grid computing and propose a layered service oriented framework for computational grid to solve the prevailing problem of dynamic load balancing.


Sign in / Sign up

Export Citation Format

Share Document