local load
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 270
Author(s):  
Andreas Rohrmoser ◽  
Christoph Bode ◽  
Benjamin Schleich ◽  
Hinnerk Hagenah ◽  
Sandro Wartzack ◽  
...  

Gear pairs made of the material pairing metal-polymer provide advantages, such as a reduced weight, beneficial damping properties and the possibility to be operated in dry running conditions. However, the service life of the pairing is limited due to wear. The properties of the metallic gearing have a significant influence on the wear behavior of the material pairing. From previous investigations, the influence of the surface topography and the flank hardness of the metal pinion is known. With regard to resource saving and efficient manufacturing of the metal pinion, cold forging offers benefits. Through cold forging, metallic gears for the material pairing can be produced ready-to-use in a process suitable for serial production. In order to enable manufacturing by extrusion, the application of gear radii is necessary. The gear radii significantly affect the extrusion process and the achievable gear properties. However, the influence of gear radii on wear within the metal-polymer material pairing has not yet been investigated. Within this contribution, the influence of the gear radii on the contact behavior as well as the resulting local load and wear of the tooth flank is determined. For this purpose, wear tests with aluminum (AlMgSi1) and steel (16MnCr5) gears with different gear radii within the pairing with polyamide (PA66) gears were performed. It has been shown that the local wear of the tooth flank can be attributed to the local load and that adjusted gear radii lead to a varying load and wear of the metal and polymer gears. Based on the findings, functional relationships regarding the choice of gear radii and the wear behavior are derived which can be applied in the design of cold forged gears.


2021 ◽  
Vol 72 (6) ◽  
pp. 356-365
Author(s):  
Jordan Radosavljević

Abstract High penetration of photovoltaic (PV) generation in low voltage (LV) distribution networks can leads some power quality problems. One of the most important issues in this regard is the impermissible voltage deviation in periods with a large imbalance between PV generation and local load consumption. Accordingly, many authors deal with this issue. This work investigates voltage regulation for LV distribution networks equipped with the hybrid distribution transformer (HDT), and with high penetration of PV units. A two-stage algorithm for voltage regulation is proposed. In the first stage, a local (distributed) voltage control is performed by minimizing the injection power of the PV-battery storage system (BS)-local load entity at the common bus. In the second stage, optimal coordination is performed between the HDT and the local voltage control. In fact, the second stage is an optimal voltage regulation problem. The aim is to minimize the voltage deviations at load buses by optimal settings the voltage support of the HDT. A PSO algorithm is used to solve this optimization problem. the proposed approach is implemented in MATLAB software and evaluated on the IEEE european LV test feeder.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mikko J. Alava

An important question in the theory of fracture is what kind of lifetime distributions may exist for materials under load. Here, this is studied in the context of a one-dimensional fracture model with local load sharing under a constant external load, “creep.” Simulations of the system with Weibull distributed initial lifetimes for the elements show that the limiting distribution follows from extreme statistics and takes the Gumbel form eventually, with longer and longer crossovers in the system size from a Weibull-like distribution, depending on the initial Weibull exponent.


Media Wisata ◽  
2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Hermawan Prasetyanto

Global Rivalry demands modernization existence at tourism sector. That thing necessary done so that tourist readies to pay a visit and felt to feet at home at city that visited. Conseqence from this modernization is builds amount of tourism sector supporting facilities. Troubleshoot appears when tourism sector development little by little threaten existence and local culture preservation. Inch by inch but certain society will adopted culture moderner that come from outside the culture self. That thing evoke problem aloof. Majority tourist comes to yogyakarta not in the first place to enjoy modern atmosphere, but exactly to know and enjoy atmosphere and local culture. If that looked for modern atmosphere, metropolis like Jakarta, Surabaya, and batam prepare it.so, if inch by inch local culture is shified, for certain that is long too long yogyakarta will lose asset to on the market in tourists. No more specification yogyakarta that can be putted to interesing tourist. Problem necessary looked for solusi , tourism development yogyakarta necessary aimed in torism development in culture preservation. To crat tourism development  in culture preservation, there are some matter that can be goed. First. encouragement returns festival local culture. Second, necessary tourism planetology mapping existence. Third, give culture local load in special province Yogyakarta education curriculum. Fourth, revitalises the palace as a culture centre. Fifth, tourism development observer team formation. If success created tourism development that pays attention to culture preservation, can be believed that from time to time Yogyakarta permanent will can to defend its existence as a tourism city


2021 ◽  
Vol 9 ◽  
Author(s):  
Subhadeep Roy ◽  
Soumyajyoti Biswas

We study the local load sharing fiber bundle model and its energy burst statistics. While it is known that the avalanche size distribution of the model is exponential, we numerically show here that the avalanche size (s) and the corresponding average energy burst (〈E〉) in this version of the model have a non-linear relation (〈E〉 ~ sγ). Numerical results indicate that γ ≈ 2.5 universally for different failure threshold distributions. With this numerical observation, it is then possible to show that the energy burst distribution is a power law, with a universal exponent value of −(γ + 1).


2021 ◽  
Vol 192 ◽  
pp. 106983
Author(s):  
Yang Mi ◽  
Jiahang Guo ◽  
Si Yu ◽  
Pengcheng Cai ◽  
Liang Ji ◽  
...  

Author(s):  
Eduard I. Starovoitov ◽  
◽  
Denis V. Leonenko ◽  

Axisymmetric deformation of a three-layer circular plate under repeated alternating loading from the plastic region by a local load is considered. To describe kinematics of asymmetrical on the thickness of the plate pack is adopted the hypothesis of a broken line. In a thin elastic-plastic load-bearing layers are used the hypothesis of Kirchhoff. A non-linearly elastic relatively thick filler is incompressible in thickness. It is taken to be a hypothesis of Tymoshenko regarding the straightness and the incompressibility of the deformed normals with linear approximation of the displacements through the thickness layer. The work of the filler in the tangential direction is taken into account. The physical relations of stress-strain relations correspond to the theory of small elastic-plastic deformations. The effect of heat flow is taken into account. The temperature field in the plate was calculated by the formula obtained by averaging the thermophysical parameters over the thickness of the package. The system of differential equations of equilibrium under loading of the plate from the natural state is obtained by the Lagrange variational method. Boundary conditions on the plate contour are formulated. The solution of the corresponding boundary value problem is reduced to finding the three desired functions: deflection, shear and radial displacement of the shear surface of the filler. A non-uniform system of ordinary nonlinear differential equations is written for these functions. Its analytical iterative solution is obtained in Bessel functions by the method of elastic solutions of Ilyushin. In case of repeated alternating loading of the plate, the solution of the boundary value problem is constructed using the theory of variable loading of Moskvitin. In this case, the hypothesis of similarity of plasticity functions at each loading step is used. Their analytical form is taken independent of the point of unloading. However, the material constants included in the approximation formulas will be different. The cyclic hardening of the material of the bearing layers is taken into account. The parametric analysis of the obtained solutions under different boundary conditions in the case of a local load distributed in a circle is carried out. The influence of temperature and nonlinearity of layer materials on the displacements in the plate is numerically investigated.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2109
Author(s):  
Changli Shi ◽  
Tongzhen Wei ◽  
Yushu Sun ◽  
Dongqiang Jia ◽  
Tianchu Li

In order to ensure the reliable power supply of the local load in the micro-grid (MG), a seamless switching control technology (SSCT) suitable for grid-connected converter (GCC) is proposed. This technology includes silicon-controlled rectifiers (SCR) forced shutdown control strategy (SCR-FSCS) and three-loop control strategy (TLCS). The SCR-SSCT adjusts the load voltage in real time to form a back voltage at the grid-connected inductor, which greatly reduces the SCR shutdown time and ensures the reliability of local load power supply. The TLCS can easily realize the switching between the current source mode and the voltage source mode of the GCC. An experimental platform is established to carry out the relevant experiments. The experimental results show the rationality and effectiveness of the theoretical analysis and the proposed control technology.


Sign in / Sign up

Export Citation Format

Share Document