scholarly journals Non-rigid free-form 2D–3D registration using a B-spline-based statistical deformation model

2017 ◽  
Vol 63 ◽  
pp. 689-699 ◽  
Author(s):  
Weimin Yu ◽  
Moritz Tannast ◽  
Guoyan Zheng
Author(s):  
Zezhong C. Chen ◽  
Xujing Yang

Extensive research on G1 biarcs fitting to free-form curves (i.e., Bezier, B-spline, and NURBS curves) has been conducted in the past decades for various purposes, including CNC contouring to make smooth, accurate profile features such as pockets, islands, and sides. However, all the proposed approaches only focused on the approximation errors and the biarc number, not on the radius of the individual fitting arc; so it could be smaller than the cutting tool, which would cause gouging during machining. This work, based on the tool radius pre-determined by the minimum size of the concavities of the design profile, proposes a new approach to approximating the profile with a G1 biarc curve in order to make smooth, accurate, and non-gouged profile features using CNC contouring. The significant new contribution of this work is a new mechanism that ensures all the concave arcs of the fitting curve are larger than the pre-determined tool and the fitting errors meet the specified tolerance. This approach can promote the use of G1 biarc tool paths in the manufacturing industry to make high precision profile features.


Author(s):  
Johan W. H. Tangelder ◽  
Joris S. M. Vergeest ◽  
Mark H. Overmars

Abstract An algorithm that derives tool access directions for machining free-form shapes is presented. A free-form shape to be machined is given by a preliminary B-spline model. We allow that the B-spline surface data are as inaccurate as the user-selected geometric accuracy of the prototype to be machined. Using surface sampling a visibility voxel map is obtained. From this map a voxel map is derived that contains per voxel a set of tool access directions. From the obtained voxel map regions can be selected that can be machined with a fixed tool access direction per region.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880957 ◽  
Author(s):  
Dezhong Zhao ◽  
Wenhu Wang ◽  
Jinhua Zhou ◽  
Ruisong Jiang ◽  
Kang Cui ◽  
...  

Parts must be measured to evaluate the manufacturing accuracy in order to check whether their dimension is in expected tolerance. In engineering, parts with free-form surfaces are generally measured by high-precision coordinate-measuring machines. The measurement accuracy is usually improved by increasing the density of measurement points, which is time-consuming and costly. In this article, a novel sampling method of measurement points for free-form surface inspection is proposed. First, surface inspection is simplified into the inspection of a number of section curves of the surface. Second, B-spline curves constructed with an iterative method are employed to approximate these section curves. Subsequently, data points necessary to construct the B-spline curves are taken as the measurement points. Finally, the proposed method is compared with other two sampling methods. The results indicate that the proposed method greatly reduced the number of measurement points without decreasing the precision of surface modeling.


2002 ◽  
Vol 2 (4) ◽  
pp. 294-301 ◽  
Author(s):  
J. Cotrina-Navau ◽  
N. Pla-Garcia ◽  
M. Vigo-Anglada

A theoretical approach to construct free form surfaces is presented. We develop the concepts that arise when a free form surface is generated by tracing a mesh, using differentiable manifold theory, and generalizing the B-spline scheme. This approach allows us to define a family of practical schemes. Four different applications of the generic approach are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document