surface generation
Recently Published Documents


TOTAL DOCUMENTS

682
(FIVE YEARS 132)

H-INDEX

39
(FIVE YEARS 8)

Author(s):  
Tengfei Yin ◽  
Suet To ◽  
Hanheng Du ◽  
Guoqing Zhang

Designs ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Yihan Xing ◽  
Wenxin Xu ◽  
Valentina Buratti

This paper investigates the use of the Kriging response surface method to estimate failure values in carbon-fibre-epoxy composite flow-lines under the influence of stochastic processes. A case study of a 125 mm flow-line was investigated. The maximum stress, Tsai-Wu and Hashin failure criteria was used to assess the burst design under combined loading with axial forces, torsion and bending moments. An extensive set of measured values was generated using Monte Carlo simulation and used as the base case population to which the results from the response surfaces was compared. The response surfaces were evaluated in detail in their ability to reproduce the statistical moments, probability and cumulative distributions and failure values at low probabilities of failure. In addition, the optimisation of the response surface calculation was investigated in terms of reducing the number of input parameters and size of the response surface. Finally, a decision chart that can be used to build a response surface to calculate failures in a carbon fibre-epoxy-composite (CFEC) flow-line was proposed based on the findings obtained. The results show that the response surface method is suitable and can calculate failure values close to that calculated using a large set of measured values. The results from this paper provide an analytical framework for identifying the principal design parameters, response surface generation, and failure prediction for CFEC flow-lines.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 369
Author(s):  
K Manjunath ◽  
Suman Tewary ◽  
Neha Khatri ◽  
Kai Cheng

The aim of manufacturing can be described as achieving the predefined high quality product in a short delivery time and at a competitive cost. However, it is unfortunately quite challenging and often difficult to ensure that certain quality characteristics of the products are met following the contemporary manufacturing paradigm, such as surface roughness, surface texture, and topographical requirements. Ultraprecision machining (UPM) requirements are quite common and essential for products and components with optical finishing, including larger and highly accurate mirrors, infrared optics, laser devices, varifocal lenses, and other freeform optics that can satisfy the technical specifications of precision optical components and devices without further post-polishing. Ultraprecision machining can provide high precision, complex components and devices with a nanometric level of surface finishing. Nevertheless, the process requires an in-depth and comprehensive understanding of the machining system, such as diamond turning with various input parameters, tool features that are able to alter the machining efficiency, the machine working environment and conditions, and even workpiece and tooling materials. The non-linear and complex nature of the UPM process poses a major challenge for the prediction of surface generation and finishing. Recent advances in Industry 4.0 and machine learning are providing an effective means for the optimization of process parameters, particularly through in-process monitoring and prediction while avoiding the conventional trial-and-error approach. This paper attempts to provide a comprehensive and critical review on state-of-the-art in-surfaces monitoring and prediction in UPM processes, as well as a discussion and exploration on the future research in the field through Artificial Intelligence (AI) and digital solutions for harnessing the practical UPM issues in the process, particularly in real-time. In the paper, the implementation and application perspectives are also presented, particularly focusing on future industrial-scale applications with the aid of advanced in-process monitoring and prediction models, algorithms, and digital-enabling technologies.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1510
Author(s):  
Ninghui Yu ◽  
Lihua Li ◽  
Chea-su Kee

Aluminum alloy (Al6061) is a common material used in the ultraprecision area. It can be machined with a good surface finish by single-point diamond turning (SPDT). Due to the material being relatively soft, it is difficult to apply post-processing techniques such as ultraprecision lapping and ultraprecision polishing, as they may scratch the diamond-turned surface. As a result, a novel low-pressure lapping method was developed by our team to reduce the surface roughness. In this study, a finite element model was developed to simulate the mechanism of this novel lapping technology. The simulation results were compared with the experimental results so as to gain a better understanding of the lapping mechanism.


Author(s):  
Ayodele O. Falade ◽  
John O. Amigun ◽  
Yousif M. Makeen ◽  
Olatunbosun O. Kafisanwo

AbstractThis research aims at characterizing and modeling delineated reservoirs in ‘Falad’ Field, Niger Delta, Nigeria, to mitigate the challenge caused by the heterogeneous nature of the reservoirs. Seismic and well log data were integrated, and geostatistics was applied to describe the reservoir properties of the interwell spaces within the study area. Four reservoirs, namely RES 1, RES 2, RES 3 and RES 4, were delineated and correlated across four wells. The reservoir properties {lithology, net to gross, porosity, permeability, water saturation} of all the delineated reservoirs mapped were determined, and two reservoirs with the best quality were picked for further analysis (surface generation and modeling) after ranking the reservoirs based on their quality. Structural interpretation of the field was carried, nine faults were mapped (F1—F9), and the fault polygon was generated. The structural model showed the area is structurally controlled with two of the major faults mapped (F1 and F3) oriented in the SW–NE direction while the other one (F4) is oriented in the NW–SE direction. A 3D grid was constructed using the surfaces of the delineated reservoirs and the reservoir properties were distributed stochastically using simple krigging method with sequential Gaussian simulation, sequential indicator simulation and Gaussian random function simulation algorithms. Geostatistical modeling used in this study has been able to give subsurface information in the areas deficient of well data as the estimated reservoir properties gotten from existing wells have been spatially distributed in the study area and will thus aid future field development while also they are used in identifying new prospect by combining property models with structural maps of the area.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1448
Author(s):  
Wei Yuan ◽  
Chi-Fai Cheung

Previous models of the relative tool-work vibration are not generalized to represent the surface generation mechanism in the ultra-precision tool servo-based diamond cutting (UTSDC) of three-dimensional (3D) microstructured surfaces. This is due to the fact that the tool-work vibration in UTSDC is no longer a steady harmonic vibration with a constant amplitude but is influenced by the tool motion along the thrust direction. In this paper, dynamic modeling of the cutting system is presented for the characterization of surface topography variation in UTSDC of a microlens array considering the tool-work vibration as an underdamped vibration. The natural frequency and damping ratio of the cutting system are determined by the data-dependent systems (DDS) method. Based on the analysis of the surface profile and cutting force signals, it is found that the tool-work vibration is significantly enhanced in the cut-in process when the cutting speed increases. The simulation results show that the proposed dynamic model can well-determine root-mean-squares RMS values of the surface primary profile and the dynamic force acting on the force sensor. The dynamic model provides insight into the formation of the surface topography variation in UTSDC of 3D microstructured surfaces, and the model might be applied in self-optimized machining systems in the future.


Sign in / Sign up

Export Citation Format

Share Document