Normalized Edge Convolutional Networks for Skeleton-based Hand Gesture Recognition

2021 ◽  
pp. 108044
Author(s):  
Fangtai Guo ◽  
Zaixing He ◽  
Shuyou Zhang ◽  
Xinyue Zhao ◽  
Jinhui Fang ◽  
...  
Author(s):  
Yong Li ◽  
Zihang He ◽  
Xiang Ye ◽  
Zuguo He ◽  
Kangrong Han

Abstract Hand gesture recognition methods play an important role in human-computer interaction. Among these methods are skeleton-based recognition techniques that seem to be promising. In literature, several methods have been proposed to recognize hand gestures with skeletons. One problem with these methods is that they consider little the connectivity between the joints of a skeleton, constructing simple graphs for skeleton connectivity. Observing this, we built a new model of hand skeletons by adding three types of edges in the graph to finely describe the linkage action of joints. Then, an end-to-end deep neural network, hand gesture graph convolutional network, is presented in which the convolution is conducted only on linked skeleton joints. Since the training dataset is relatively small, this work proposes expanding the coordinate dimensionality so as to let models learn more semantic features. Furthermore, relative coordinates are employed to help hand gesture graph convolutional network learn the feature representation independent of the random starting positions of actions. The proposed method is validated on two challenging datasets, and the experimental results show that it outperforms the state-of-the-art methods. Furthermore, it is relatively lightweight in practice for hand skeleton-based gesture recognition.


2020 ◽  
Vol 17 (4) ◽  
pp. 497-506
Author(s):  
Sunil Patel ◽  
Ramji Makwana

Automatic classification of dynamic hand gesture is challenging due to the large diversity in a different class of gesture, Low resolution, and it is performed by finger. Due to a number of challenges many researchers focus on this area. Recently deep neural network can be used for implicit feature extraction and Soft Max layer is used for classification. In this paper, we propose a method based on a two-dimensional convolutional neural network that performs detection and classification of hand gesture simultaneously from multimodal Red, Green, Blue, Depth (RGBD) and Optical flow Data and passes this feature to Long-Short Term Memory (LSTM) recurrent network for frame-to-frame probability generation with Connectionist Temporal Classification (CTC) network for loss calculation. We have calculated an optical flow from Red, Green, Blue (RGB) data for getting proper motion information present in the video. CTC model is used to efficiently evaluate all possible alignment of hand gesture via dynamic programming and check consistency via frame-to-frame for the visual similarity of hand gesture in the unsegmented input stream. CTC network finds the most probable sequence of a frame for a class of gesture. The frame with the highest probability value is selected from the CTC network by max decoding. This entire CTC network is trained end-to-end with calculating CTC loss for recognition of the gesture. We have used challenging Vision for Intelligent Vehicles and Applications (VIVA) dataset for dynamic hand gesture recognition captured with RGB and Depth data. On this VIVA dataset, our proposed hand gesture recognition technique outperforms competing state-of-the-art algorithms and gets an accuracy of 86%


2020 ◽  
Vol 29 (6) ◽  
pp. 1153-1164
Author(s):  
Qianyi Xu ◽  
Guihe Qin ◽  
Minghui Sun ◽  
Jie Yan ◽  
Huiming Jiang ◽  
...  

Author(s):  
Sruthy Skaria ◽  
Da Huang ◽  
Akram Al-Hourani ◽  
Robin J. Evans ◽  
Margaret Lech

Sign in / Sign up

Export Citation Format

Share Document