scholarly journals Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas

2016 ◽  
Vol 54 ◽  
pp. 1-64 ◽  
Author(s):  
Turgut M. Gür
Author(s):  
Min Soo Kim ◽  
Young Sang Kim ◽  
Young Duk Lee ◽  
Minsung Kim ◽  
dongkyu Kim

Abstract This study analyzed the internal phenomena of solid oxide fuel cells driven by liquefied natural gas. Reforming reactions of liquefied natural gas constituent in the solid oxide fuel cells were examined. First, the performance of solid oxide fuel cells using liquefied natural gas was compared to those using methane as fuel. Liquefied natural gas-driven solid oxide fuel cells outperformed methane-driven solid oxide fuel cells under all current conditions, with a maximum performance difference of approximately 12.8%. Then, the effect of inlet composition ratio on the internal phenomena in the solid oxide fuel cells was examined. The lower the steam-to-carbon ratio, the higher the steam reforming reaction in the cell. By changing the ratio, 7.1% of more hydrogen could be reformed. Finally, the effect of reformer operation on the internal phenomena in the solid oxide fuel cells was examined. Under 0.35 A/cm2, lower pre-reforming rate of reformer enhance the performance of solid oxide fuel cells. At high current density region, however, a higher pre-reforming rate of reforming is more favorable because the reforming reaction is rare in solid oxide fuel cells. This research can provide guidelines for achieving high power output of solid oxide fuel cells with high fuel flexibility.


Author(s):  
Vittorio Verda ◽  
Gianmichele Orsello ◽  
Gianni Disegna ◽  
Ferrante Debenedictis

Solid Oxide Fuel Cells (SOFCs) are a promising technology for distributed electricity generation and cogeneration. Most of the installations of SOFC are small size fuel cells (of the order of decades of watts or few hundred watts) in laboratories. There are very few installations of commercial scale SOFC plants. In this paper the operating results obtained with two SOFC plants are presented. These plants, whose nominal electric power is 100 kW and 5 kW respectively, produce heat and power to contribute to the energy requirements of the Turbocare factory in Torino, Italy.


2015 ◽  
Vol 3 (47) ◽  
pp. 23973-23980 ◽  
Author(s):  
Alfonso Garcia ◽  
Ning Yan ◽  
Adrien Vincent ◽  
Anand Singh ◽  
Josephine M. Hill ◽  
...  

In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion.


Sign in / Sign up

Export Citation Format

Share Document