The onset of buoyancy-driven convection in fluid layers with temperature-dependent viscosity

2006 ◽  
Vol 155 (1-2) ◽  
pp. 42-47 ◽  
Author(s):  
Min Chan Kim ◽  
Chang Kyun Choi
1969 ◽  
Vol 36 (2) ◽  
pp. 239-258 ◽  
Author(s):  
S. F. Liang ◽  
A. Vidal ◽  
Andreas Acrivos

Numerical solutions to the Boussinesq equations containing a temperature-dependent viscosity are presented for the case of axisymmetric buoyancy-driven convective flow in a cylindrical cell. Two solutions, one with upflow and the other with downflow at the centre of the cell, were found for each set of boundary conditions that were considered. The existence of these two steady-state régimes was verified experimentally for the case of a cylindrical cell having rigid insulating lateral boundaries and isothermal top and bottom planes.Using a perturbation expansion it is also shown that only one of these solutions remains stable in the subcritical régime. This, however, seems to be confined to a very narrow range of Rayleigh numbers, beyond which, according to all the evidence presently at hand, both solutions are equally stable for those values of the Rayleigh and Prandtl numbers for which axisymmetric motions occur.Finally, certain fundamental differences between the problem considered here and that of thermal convection in a layer of infinite horizontal extent are briefly discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1300
Author(s):  
Evgenii S. Baranovskii ◽  
Vyacheslav V. Provotorov ◽  
Mikhail A. Artemov ◽  
Alexey P. Zhabko

This paper deals with a 3D mathematical model for the non-isothermal steady-state flow of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear boundary value problem that arises in the framework of this model. The main result of our work is an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based on a combination of the Galerkin approximation scheme with one result from the field of topological degrees for odd mappings defined on symmetric domains.


Sign in / Sign up

Export Citation Format

Share Document