fluid layers
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 45)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 17 ◽  
pp. 29-33
Author(s):  
Asad Salem

The stability of a two-phase interface is a crucial occurrence that involves the design of many engineering applications. It correlates the spatial and droplet size-distributions of many fluid spraying applications and has a great effect on the estimations of the critical heat flux of systems that involves phase change or evaporation. However, the existing hydrodynamic models are only able to predict the stability of a plane fluid sheet, surrounded by an infinite pool of liquid. The case of a thin sheet of liquid surrounding a vapor sheet and enclosed between two walls has not been studied yet. The present paper solves this problem using a linearized stability analysis. Velocity potentials satisfying these conditions are introduced and a complete analysis is presented.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Aimad Koulali ◽  
Aissa Abderrahmane ◽  
Wasim Jamshed ◽  
Syed M. Hussain ◽  
Kottakkaran Sooppy Nisar ◽  
...  

This work aims to determine how the temperature gradient orientation affects the heat exchange between two superposed fluid layers separated by zero wall thickness. The finite volume method (FVM) has been developed to solve the governing equations of both fluid layers. To achieve the coupling between the two layers, the heat flow continuity with the no-slip condition at the interface was adopted. The lower part of the space is filled with a nanofluid while the upper part is filled with a pure fluid layer. We have explored two cases of temperature gradient orientation: parallel gradient to gravity forces of our system and perpendicular gradient to gravity forces. We took a set of parameters, Ri and ϕ, to see their influence on the thermal and hydrodynamic fields as well as the heat exchange rate between the two layers. The main applications of this study related to biological systems such as the cytoplasm and the nucleoplasm are phase-separated solutions, which can be useful as models for membranelles organelles and can serve as a cooling system application using heat exchange. The Richardson number and the volume of nanosolid particles have a big impact on the rate of change of heat transmission. When a thermal gradient is perpendicular to gravity forces, total heat transmission improves with increasing solid volume percentage, but when the thermal gradient is parallel to gravity forces, overall heat transfer decreases significantly.


2021 ◽  
Vol 16 ◽  
pp. 241-253
Author(s):  
Andrew S. Tanious ◽  
Ahmed A. Abdel-Rehim

Enhancement of the thermal performance of the parabolic trough receiver tube is one of the approaches to energy sustainability. In the present work, the thermal performance of an axially rotating receiver tube equipped with internal flat longitudinal fins is studied. The effects of both the fin height and the rate of axial rotation are investigated at low values of axial Reynold’s number. The numerical analysis is held at various rotation rates using ANSYS Fluent. The numerical findings showed that the effect of the axial rotation on the internally finned receiver tube is not significant yet negative where a maximum reduction of 6% in the outlet temperature is reached in the 2mm height internally finned tube at rotation rate of N=21. However, the analysis showed that as the rotation rate increases, the temperature homogeneity between the fluid layers also increases and thus the liquid stratification phenomenon between the fluid layers is eliminated. The percentage of temperature difference between the fluid layers near the pipe center and the layers near the pipe wall reaches an optimum value of 58.4% at N=21 which is confirmed by an optimum increase of 110% in Nusselt number at the same rotation rate. However, a maximum loss of 81.6% in pressure coefficient is found in the case of the 2mm internally finned tube due to the increased turbulence. Thus, the integration of pipe axial rotation and internal fins can yield an enhancement in the heat transfer to the parabolic trough concentrator receiver tube and thus its thermal performance.


Author(s):  
J. Bouchgl ◽  
S. Aniss

We investigate the effect of horizontal periodic oscillation on the interfacial instability of two immiscible and viscous fluids of different densities in a fully saturated porous media. A linear stability analysis of the viscous and time-dependent basic flow leads to a periodic oscillator describing the evolution of the interfacial perturbation amplitude. The horizontal oscillation leads to the occurrence of two types of instability, the Kelvin–Helmholtz’s instability and the parametric resonance. These instabilities appear at the frontier between water and petroleum and have a practical interest in oil reservoir engineering. The results show that, an increase of the oscillation frequency destabilizes the Kelvin–Helmholtz instability and displaces the parametric instability regions toward the short wavelength perturbation. Also, we examine mainly how the other physical parameters of the system affect the instabilities for various permeability and porosity values of the porous medium as well as for relative heights of the two fluid layers.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 346
Author(s):  
Putu Veri Swastika ◽  
Sri Redjeki Pudjaprasetya

This paper confronts the numerical simulation of steady flows of fluid layers through channels of varying bed and width. The fluid consists of two immiscible fluid layers with constant density, and it is assumed to be of a one-dimensional shallow flow. The governing equation is a coupled system of two-layer shallow water models. In this paper, we apply a direct extension of the momentum conserving scheme previously used for solving the one layer shallow water equations. Computations of various steady-state solutions are used to demonstrate the performance of the proposed numerical scheme. Under the influence of a given flow rate, the numerical steady interface is generated in a channel topography with a hump. The results obtained confirm the analytic steady interface of the two-layer rigid-lid model. Furthermore, the same scheme was used with an additional artificial damping to simulate the maximal exchange flow in channels of varying width. The numerical steady interface agreed well with the analytical steady solutions.


Author(s):  
Hamza Benhacine ◽  
Brahim Mahfoud ◽  
Mohamed Salmi

Numerical simulations aim to investigate the bifurcation caused by swirling flow between two coaxial vertical cylinders, and the fluid layers produced by the thermal gradient. The stability of both bifurcation and fluid layers by an axial magnetic field is analyzed. The finite-volume method is used to solve the governing Navier–Stokes, temperature and potential equations. A conducting viscous fluid characterized by a small Prandtl number [Formula: see text] is placed in the gap between two coaxial cylinders. The combination of aspect ratio, [Formula: see text] and Reynolds number, [Formula: see text] for three annular gaps ([Formula: see text] and [Formula: see text]) is compared in terms of flow stability, and heat transfer rates. Without a magnetic field, the vortex breakdown takes place near the inner cylinder due to the increased pumping action of the Ekman boundary layer. Fluid layered structures are developed by the competition between buoyancy and viscous forces. The increase in the magnitude of the magnetic field retarders the onset of the oscillatory instability caused by the disappearance of the vortex breakdown and reduces the number of fluid layers. The limits in which a vortex breakdown bubble manifests and the limits of transition from the multiple fluid layers to the single fluid layer are established.


2021 ◽  
Vol 1036 ◽  
pp. 175-184
Author(s):  
Dong Ming Mo

Aiming at the thermocapillary convection stability of sapphire crystal grown by liquid-encapsulated Czochralski method, by non-linear numerical simulation, obtained the flow function and temperature distribution of R-Z cross section, as well as the velocity and temperature distribution at liquid-liquid interface and monitoring point of B2O3/sapphire melt in annular two liquid system, covered with solid upper wall and in microgravity. By means of linear stability analysis, obtained the neutral stability curve and critical stability parameters of the system, and revealed the temperature fluctuation of the liquid-liquid interface. The calculated results of B2O3/sapphire melt were compared with 5cSt silicone oil/HT-70. The results show that under the same geometrical conditions, the flow of B2O3/sapphire melt system is more unstable than 5cSt silicone oil/HT-70, there are two unstable flow patterns, radial three-dimensional steady flow cell and hydrothermal waves near the hot wall. The larger the ratio of Pr number of upper and lower fluid layers is, the better the effect of restraining the flow of lower fluid layers is.


2021 ◽  
Vol 56 (4) ◽  
pp. 587-599
Author(s):  
A. E. Gledzer ◽  
E. B. Gledzer ◽  
A. A. Khapaev ◽  
O. G. Chkhetiani

2021 ◽  
Vol 920 ◽  
Author(s):  
Thomas Le Reun ◽  
Duncan R. Hewitt
Keyword(s):  

Abstract


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 574
Author(s):  
Kieran Barrett-Snyder ◽  
Susan Lane ◽  
Nathan Lazarus ◽  
W. C. Kirkpatrick Alberts ◽  
Brendan Hanrahan

The Pacinian corpuscle is a highly sensitive mammalian sensor cell that exhibits a unique band-pass sensitivity to vibrations. The cell achieves this band-pass response through the use of 20 to 70 elastic layers entrapping layers of viscous fluid. This paper develops and explores a scalable mechanical model of the Pacinian corpuscle and uses the model to predict the response of synthetic corpuscles, which could be the basis for future vibration sensors. The −3dB point of the biological cell is accurately mimicked using the geometries and materials available with off-the-shelf 3D printers. The artificial corpuscles here are constructed using uncured photoresist within structures printed in a commercial stereolithography (SLA) 3D printer, allowing the creation of trapped fluid layers analogous to the biological cell. Multi-layer artificial Pacinian corpuscles are vibration tested over the range of 20–3000 Hz and the response is in good agreement with the model.


Sign in / Sign up

Export Citation Format

Share Document