Crustal structure and lateral variations in Moho beneath the Delhi fold belt, NW India: Insight from gravity data modeling and inversion

2019 ◽  
Vol 297 ◽  
pp. 106317 ◽  
Author(s):  
Divyanshu Dwivedi ◽  
Ashutosh Chamoli ◽  
Anand K. Pandey
1997 ◽  
Vol 134 (5) ◽  
pp. 607-616 ◽  
Author(s):  
G. VAN GROOTEL ◽  
J. VERNIERS ◽  
B. GEERKENS ◽  
D. LADURON ◽  
M. VERHAEREN ◽  
...  

New data implying crustal activation of Eastern Avalonia along the Anglo-Brabant fold belt are presented. Late Ordovician subduction-related magmatism in East Anglia and the Brabant Massif, coupled with accelerated subsidence in the Anglia Basin and in the Brabant Massif during Silurian time, indicate a foreland basin development. Final collision resulted in folding, cleavage development and thrusting during the mid-Lochkovian to mid-Eifelian. In the southeast of the Anglo-Brabant fold belt, Acadian deformation produced basin inversion and the regional antiformal structure of the Brabant Massif. The uplift, inferred from the sedimentology, petrography and reworked palynomorphs in the Lower Devonian of the Dinant Synclinorium is confirmed by illite crystallinity studies. The tectonic model discussed implies the presence of two subduction zones in the eastern part of Eastern Avalonia, one along the Anglo-Brabant fold belt and another under the North Sea in the prolongation of the North German–Polish Caledonides.


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


2011 ◽  
Vol 24 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Wenliang Jiang ◽  
Jingfa Zhang ◽  
Xiaocui Lu ◽  
Jing Lu

2002 ◽  
Vol 355 (1-4) ◽  
pp. 99-126 ◽  
Author(s):  
T Raum ◽  
R Mjelde ◽  
P Digranes ◽  
H Shimamura ◽  
H Shiobara ◽  
...  

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1909-1916 ◽  
Author(s):  
Juan García‐Abdeslem

A method is developed for 2D forward modeling and nonlinear inversion of gravity data. The forward modeling calculates the gravity anomaly caused by a 2D source body with an assumed depth‐dependent density contrast given by a cubic polynomial. The source body is bounded at depth by a smooth, curvilinear surface given by the Fourier series, which represents the basement. The weighted and damped discrete nonlinear inverse method presented here can invert gravity data to infer the geometry of the source body. The use of the Fourier series to define the basement geometry allows the interpreter to reconstruct a broad variety of geometries for the geologic structures using a small number of free parameters. Both modeling and inversion methods are illustrated with examples using field gravity data across the San Jacinto graben in southern California and across the Sayula basin in Jalisco, Mexico. The inversion of the San Jacinto graben residual Bouguer gravity data yields results compatible with those from previous interpretations of the same data set, suggesting that this geologic structure accommodates about 2.5 km of sediments. The inversion of the residual Bouguer gravity data across the Sayula basin suggests a maximum of 1‐km‐thick sedimentary infill.


Sign in / Sign up

Export Citation Format

Share Document