bransfield strait
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 37)

H-INDEX

34
(FIVE YEARS 1)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 185
Author(s):  
Vladimir Mukhanov ◽  
Evgeny Sakhon ◽  
Alexander Polukhin ◽  
Vladimir Artemiev ◽  
Eugene Morozov ◽  
...  

A remarkable shift in the species composition and size distribution of the phytoplankton community have been observed in coastal waters along the Antarctic Peninsula over the last three decades. Smaller photoautotrophs such as cryptophytes are becoming more abundant and important for the regional ecosystems. In this study, flow cytometry was used to quantify the smallest phytoplankton in the central Bransfield Strait and explore their distribution across the strait in relation to physical and chemical properties of the two major water masses: the warmer and less saline Transitional Zonal Water with Bellingshausen Sea influence (TBW), and the cold and salty Transitional Zonal Water with Weddell Sea influence (TWW). Pico- and nano-phytoplankton clusters were distinguished and enumerated in the cytograms: photosynthetic picoeukaryotes, cryptophytes (about 9 µm in size), and smaller (3 µm) nanophytoplankton. It was shown that nanophytoplankton developed higher abundances and biomasses in the warmer and less saline TBW. This biotope was characterized by a more diverse community with a pronounced dominance of Cryptophyta in terms of biomass. The results support the hypothesis that increasing melt-water input can potentially support spatial and temporal extent of cryptophytes. The replacement of large diatoms with small cryptophytes leads to a significant shift in trophic processes in favor of the consumers such as salps, which able to graze on smaller prey.


2021 ◽  
Author(s):  
Helena Seivane ◽  
Rosa Martín ◽  
Javier Almendros ◽  
William Wilcock ◽  
Dax Soule

Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 632-644
Author(s):  
A. A. Polukhin ◽  
E. G. Morozov ◽  
P. P. Tishchenko ◽  
D. I. Frey ◽  
V. A. Artemiev ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Christian S. Reiss ◽  
Anthony M. Cossio ◽  
Jennifer Walsh ◽  
George R. Cutter ◽  
George M. Watters

We compare estimates of krill density derived from gliders to those from contemporaneous and previous ship-based surveys. Our comparisons cover several temporal and spatial scales within two strata around the northern Antarctic Peninsula (off Cape Shirreff on the north side of Livingston Island and in the Bransfield Strait). Our objective is to explore the feasibility of using gliders to supplement or replace vessel-based surveys of fishery resources. We deployed two long-duration Slocum G3 gliders manufactured by Teledyne Webb Research (TWR), each equipped with a suite of oceanographic sensors and a three-frequency (38, 67.5, and 125 kHz, each single-beam) Acoustic Zooplankton Fish Profiler. We used the acoustic data collected by these gliders to estimate biomass densities (g⋅m–2) of Antarctic krill (Euphausia superba). The two gliders were, respectively, deployed for 82 and 88 days from mid-December 2018 through mid-March 2019. Off Cape Shirreff, glider-based densities estimated from two repeat small-scale surveys during mid-December and January were 110.6 and 55.7 g⋅m–2, respectively. In Bransfield Strait, the glider-based estimate of biomass density was 106.7 g⋅m–2 during December–January. Contemporaneous ship-based estimates of biomass density, from a multi-ship broad-scale krill survey (Macaulay et al., 2019) restricted to the areas sampled by the gliders, were 84.6 g⋅m–2 off Cape Shirreff and 79.7 g⋅m–2 in Bransfield Strait during January. We compared two alternative krill-delineation algorithms (dB differencing and SHAPES); differences between biomass densities estimated by applying these algorithms were small and ranged between 4 and 7%. Alternative methods of sampling krill length-frequency distributions (LFDs) (nets or predator diets), which are required to convert acoustic energy to biomass density, also influenced the glider-based results. In Bransfield Strait, net-based estimates of biomass density were 6% less than those based on predator diets. Off Cape Shirreff the biomass density of krill estimated from a net-based LFD was 20% greater than that based on predator diets. Development of a variance estimator for glider-based biomass surveys is ongoing, but our results demonstrate that fisheries surveys using acoustically-equipped gliders are feasible, can provide density estimates to inform management, and may be conducted at lower cost than ship surveys in some cases.


2021 ◽  
Author(s):  
Eugene Morozov ◽  
Dmitry Frey ◽  
Elizaveta Khimchenko

<p>Observations of tidal internal waves in the Bransfield Strait, Antarctica, are analyzed. The measurements were carried out for 14 days on a moored station equipped with five autonomous temperature and pressure sensors. The mooring was deployed on the slope of Nelson Island (South Shetland Islands archipelago) over a depth of 70 m at point 62°21ꞌ S, 58°49ꞌ W. Analysis is based on the fluctuations of isotherms.  Vertical displacements of temperature revealed that strong internal vertical oscillations up to 30–40 m are caused by the diurnal internal tide. Spectral analysis of vertical displacements of the 0.9°C isotherm showed a clear peak at a period of 24 h. It is known that the tides in the Bransfield Strait are mostly mixed diurnal and semidiurnal, but during the Antarctic summer, diurnal tide component may intensify. The velocity ellipses of the barotropic tidal currents were estimated using the global tidal model TPXO9.0. It was found that tidal ellipses rotate clockwise with a period of 24 h and anticlockwise with a period of 12 h. The waves are forced due to the interaction of the barotropic tide with the bottom topography. Diurnal internal tides do not develop at latitudes higher than 30º over flat bottom. The research was supported by RFBR grant 20-08-00246.</p>


2021 ◽  
Vol 802 ◽  
pp. 228744
Author(s):  
Joan Antoni Parera-Portell ◽  
Flor de Lis Mancilla ◽  
José Morales ◽  
Javier Almendros ◽  
Vanessa Jiménez-Morales

2021 ◽  
pp. M55-2018-37 ◽  
Author(s):  
Karsten M. Haase ◽  
Christoph Beier

AbstractYoung volcanic centres of the Bransfield Strait and James Ross Island occur along back-arc extensional structures parallel to the South Shetland island arc. Back-arc extension was caused by slab rollback at the South Shetland Trench during the past 4 myr. The variability of lava compositions along the Bransfield Strait results from varying degrees of mantle depletion and input of a slab component. The mantle underneath the Bransfield Strait is heterogeneous on a scale of approximately tens of kilometres with portions in the mantle wedge not affected by slab fluids. Lavas from James Ross Island east of the Antarctic Peninsula differ in composition from those of the Bransfield Strait in that they are alkaline without evidence for a component from a subducted slab. Alkaline lavas from the volcanic centres east of the Antarctic Peninsula imply variably low degrees of partial melting in the presence of residual garnet, suggesting variable thinning of the lithosphere by extension. Magmas in the Bransfield Strait form by relatively high degrees of melting in the shallow mantle, whereas the magmas some 150 km further east form by low degrees of melting deeper in the mantle, reflecting the diversity of mantle geodynamic processes related to subduction along the South Shetland Trench.


2021 ◽  
pp. M55-2018-58
Author(s):  
John L. Smellie

AbstractFollowing more than 25 years of exploration and research since the last regional appraisal, the number of known subaerially exposed volcanoes in the northern Antarctic Peninsula region has more than trebled, from less than 15 to more than 50, and that total must be increased at least three-fold if seamounts in Bransfield Strait are included. Several volcanoes remain unvisited and there are relatively few detailed studies. The region includes Deception Island, the most prolific active volcano in Antarctica, and Mount Haddington, the largest volcano in Antarctica. The tectonic environment of the volcanism is more variable than elsewhere in Antarctica. Most of the volcanism is related to subduction. It includes very young ensialic marginal basin volcanism (Bransfield Strait), back-arc alkaline volcanism (James Ross Island Volcanic Group) and slab-window-related volcanism (seamount offshore of Anvers Island), as well as volcanism of uncertain origin (Anvers and Brabant islands; small volcanic centres on Livingston and Greenwich islands). Only ‘normal’ arc volcanism is not clearly represented, possibly because active subduction virtually ceased at c. 4 Ma. The eruptive environment for the volcanism varied between subglacial, marine and subaerial but a subglacial setting is prominent, particularly in the James Ross Island Volcanic Group.


Sign in / Sign up

Export Citation Format

Share Document