3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury

Author(s):  
Qian Qiu ◽  
Haifeng Zou ◽  
Hang Zou ◽  
Tianzhong Jing ◽  
XingPeng Li ◽  
...  

The functional properties of marine invertebrate larvae represent the sum of the physiological activities of the individual, the interdependence among cells making up the whole, and the correct positioning of cells within the larval body. This chapter examines physiological aspects of nutrient acquisition, digestion, assimilation, and distribution within invertebrate larvae from an organismic and comparative perspective. Growth and development of larvae obviously require the acquisition of “food.” Yet the mechanisms where particulate or dissolved organic materials are converted into biomass and promote development of larvae differ and are variably known among groups. Differences in the physiology of the digestive system (secreted enzymes, gut transit time, and assimilation) within and among feeding larvae suggest the possibility of an underappreciated plasticity of digestive physiology. How the ingestion of seawater by and the existence of a circulatory system within larvae contribute to larval growth and development represent important topics for future research.


Author(s):  
Lvquan Zhao ◽  
Wei Wang ◽  
Ying Qiu ◽  
Alex S. Torson

Abstract The accumulation of nutrients during diapause preparation is crucial because any lack of nutrition will reduce the likelihood of insects completing diapause, thereby decreasing their chances of survival and reproduction. The fall webworm, Hyphantria cunea, diapause as overwintering pupae and their diapause incidence and diapause intensity are regulated by the photoperiod. In this study, we test the hypothesis that photoperiod influences energy reserve accumulation during diapause preparation in fall webworm. We found that the body size and mass, lipid and carbohydrate content of pupae with a short photoperiod during the diapause induction phase were significantly greater than those of pupae with a relatively short photoperiod, and the efficiency of converting digested food and ingested food into body matter was greater in the short-photoperiod diapause-destined larvae than the relatively short-photoperiod diapause-destined larvae. We also observed higher lipase and amylase activities in short-photoperiod diapause-destined larvae relative to the counterparts. However, no obvious difference was found in protein and protease in the pupae with a short photoperiod during the diapause induction phase and short-photoperiod diapause-destined larvae compared with the counterparts. Therefore, we conclude that the energy reserve patterns of diapausing fall webworm pupae are plastic and that short-photoperiod diapause-destined larvae increase their energy reserves by improving their feeding efficiency and increase their lipid and carbohydrate stores by increasing the lipase and amylase activities in the midgut.


Sign in / Sign up

Export Citation Format

Share Document