Numerical simulation of acoustic reflection logging while drilling based on a cylindrical phased array acoustic receiver station

2019 ◽  
Vol 183 ◽  
pp. 106467 ◽  
Author(s):  
Shubo Yang ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju
2020 ◽  
Vol 17 (5) ◽  
pp. 1272-1280
Author(s):  
Jian-Lin Ben ◽  
Wen-Xiao Qiao ◽  
Xiao-Hua Che ◽  
Xiao-Dong Ju ◽  
Jun-Qiang Lu ◽  
...  

Abstract Acoustic waves enter a rock formation from a borehole and are reflected or scattered upon encountering a geologic structure. Consequently, we obtain the structure location represented by the azimuth and distance from the borehole using the acoustic reflection or scattering. Downhole acoustic measurements with the azimuthal resolution are realized using an azimuthal acoustic receiver sonde composed of several arcuate phased array receivers. Eight sensors distributed evenly across the arcuate phased array receiver can record acoustic waves independently; this allows us to adopt the beamforming method. We use a supporting logging tool to conduct the downhole test in two adjacent fluid-filled boreholes, for validating the evaluation of the geologic structure using scattered P-waves. The test results show the multi-azimuth images of the target borehole and the azimuthal variation in scattering amplitudes. Thus, we obtain the precise location of the target borehole. Furthermore, the measured values of the target borehole are consistent with the actual values, indicating that we can accurately evaluate a near-borehole geologic structure with scattered P-waves.


2012 ◽  
Vol 39 (1-4) ◽  
pp. 405-411 ◽  
Author(s):  
Cuixiang Pei ◽  
Kazuyuki Demachi ◽  
Haitao Zhu ◽  
Kazuyoshi Koyama ◽  
Mitsuru Uesaka

2020 ◽  
Vol 17 (3) ◽  
pp. 645-657
Author(s):  
Zhen-Guan Wu ◽  
Shao-Gui Deng ◽  
Xu-Quan He ◽  
Runren Zhang ◽  
Yi-Ren Fan ◽  
...  

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D99-D113 ◽  
Author(s):  
Paweł J. Matuszyk ◽  
Carlos Torres-Verdín

Numerical simulation of sonic logging-while-drilling (LWD) borehole measurements is challenging because of significant wave propagation effects due to the massive drilling collar occupying a large portion of the borehole. In addition, the internal structure of the LWD tool can have a significant impact on the measured dispersions of Stoneley and quadrupole modes. The collar is typically constructed with a set of inner periodic grooves, which act as a mechanical filter to attenuate undesirable collar modes. Reliable numerical simulation and interpretation of LWD sonic waveforms requires that all features and dimensions of the drilling collar be included in the simulation model. Furthermore, the presence of the drilling collar can prompt numerical instabilities due to backward propagating modes in the perfectly matched layer (PML) commonly used to truncate the computational domain. This problem can be circumvented with the implementation of artificial viscoelastic attenuation in the collar whenever the simulations are intended to reproduce only wave propagation within the surrounding rock formations. In addition, reliable modeling of borehole wave propagation in the presence of high contrasts in material properties and the internal structure of the LWD collar requires a numerical method capable of accurately and stably resolving all spectral scales present in the model. We implemented an automatic [Formula: see text]-adaptive finite-element method in the frequency domain combined with a PML technique to simulate LWD sonic logging measurements. Examples of the application verified the accuracy and reliability of the simulated borehole and formation propagation modes in the presence of casing and internal structures in the LWD collar. The presence of steel casing and quality of casing/formation bond significantly influence the propagation modes excited in a borehole. However, it is still possible to estimate the formation shear slowness using monopole and quadrupole sources regardless of the quality of cement bond in fast formations. Assessment of the formation compressional slowness was significantly impeded by the strong pipe mode. Estimation of formation shear slowness in slow formations is practically impossible due to the presence of casing and a strong annulus mode when the quality of casing bond is poor.


2019 ◽  
Vol 2 (3) ◽  
pp. 89-94
Author(s):  
Kirill Danilovskiy ◽  
Vyacheslav Glinskikh ◽  
Oleg Nechaev

Reservoir microimaging tools are currently one of the most high-tech devices used in wireline logging and logging-while-drilling. Based on a three-dimensional numerical simulation, the spatial resolution of the first Russian lateral scanning logging-while drilling tool was estimated. An algorithm for constructing a geoelectric model with an arbitrary distribution of electrical resistivity in the near-wellbore space is described.


Author(s):  
Yinkang Qin ◽  
Jianfeng Shi ◽  
Jinyang Zheng

With the application of High-density polyethylene (HDPE) pipe with thick wall in nuclear power plant (NPP), great attention has been paid to the safety of the pipeline’s joints, which can be assessed by phased array ultrasonic testing (PAUT). PAUT creates constructive interference of acoustic waves to generate focused beams according to delay law based on time-of-flight. However, due to the existence of acoustic attenuation and dispersion, waveform distortion occurs when ultrasonic pulse propagates in HDPE, which will accumulate with the increase of propagation distance, and then results in imaging errors. In this paper, the relationship of acoustic attenuation and dispersion in HDPE was obtained by numerical simulation in Field II®, which can be verified by the experiment of our previous work. Besides, the investigation of the waveform distortion revealed the linear relation between peak offset and propagation distance. Considering the relation, an improved delay law was proposed to increase the intensity of ultrasonic field. This improved delay law was compared with the conventional one by numerical simulation of ultrasonic field and PAUT experiments, which showed that the improved delay law could increase the image sensitivity.


1990 ◽  
Vol 7 (3) ◽  
pp. 193-199
Author(s):  
Wang Changqing ◽  
Zhu Xili ◽  
Chen Jinyuan

Sign in / Sign up

Export Citation Format

Share Document