Frequency-domain simulation of logging-while-drilling borehole sonic waveforms

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D99-D113 ◽  
Author(s):  
Paweł J. Matuszyk ◽  
Carlos Torres-Verdín

Numerical simulation of sonic logging-while-drilling (LWD) borehole measurements is challenging because of significant wave propagation effects due to the massive drilling collar occupying a large portion of the borehole. In addition, the internal structure of the LWD tool can have a significant impact on the measured dispersions of Stoneley and quadrupole modes. The collar is typically constructed with a set of inner periodic grooves, which act as a mechanical filter to attenuate undesirable collar modes. Reliable numerical simulation and interpretation of LWD sonic waveforms requires that all features and dimensions of the drilling collar be included in the simulation model. Furthermore, the presence of the drilling collar can prompt numerical instabilities due to backward propagating modes in the perfectly matched layer (PML) commonly used to truncate the computational domain. This problem can be circumvented with the implementation of artificial viscoelastic attenuation in the collar whenever the simulations are intended to reproduce only wave propagation within the surrounding rock formations. In addition, reliable modeling of borehole wave propagation in the presence of high contrasts in material properties and the internal structure of the LWD collar requires a numerical method capable of accurately and stably resolving all spectral scales present in the model. We implemented an automatic [Formula: see text]-adaptive finite-element method in the frequency domain combined with a PML technique to simulate LWD sonic logging measurements. Examples of the application verified the accuracy and reliability of the simulated borehole and formation propagation modes in the presence of casing and internal structures in the LWD collar. The presence of steel casing and quality of casing/formation bond significantly influence the propagation modes excited in a borehole. However, it is still possible to estimate the formation shear slowness using monopole and quadrupole sources regardless of the quality of cement bond in fast formations. Assessment of the formation compressional slowness was significantly impeded by the strong pipe mode. Estimation of formation shear slowness in slow formations is practically impossible due to the presence of casing and a strong annulus mode when the quality of casing bond is poor.

Author(s):  
A. T. Kunakbaeva ◽  
A. M. Stolyarov ◽  
M. V. Potapova

Free-cutting steel gains specific working properties thanks to the high content of sulfur and phosphorus. These elements, especially sulfur, have a rather high tendency to segregation. Therefore, segregation defects in free-cutting steel continuously cast billets can be significantly developed. The aim of the work was to study the influence of the chemical composition of freecutting steel and casting technological parameters on the quality of the macrostructure of continuously cast billets. A metallographic assessment of the internal structure of cast metal made of free-cutting steel and data processing by application of correlation and regression analysis were the research methods. The array of production data of 43 heats of free-cutting steel of grade A12 was studied. Steel casting on a five-strand radial type continuous casting machine was carried out by various methods of metal pouring from tundish into the molds. Metal of 19 heats was poured with an open stream, and 24 heats – by a closed stream through submerged nozzles with a vertical hole. High-quality billets had a cross-sectional size of 150×150 mm. The macrostructure of high-quality square billets made of free-cutting steel of A12 grade is characterized by the presence of central porosity, axial segregation and peripheral point contamination, the degree of development of which was in the range from 1.5 to 2.0 points, segregation cracks and strips – about 1.0 points. In the course of casting with an open stream, almost all of these defects are more developed comparing with the casting by a closed stream. As a result of correlation and regression analysis, linear dependences of the development degree of segregation cracks and strips both axial and angular on the sulfur content in steel and on the ratio of manganese content to sulfur content were established. The degree of these defects development increases with growing of sulfur content in steel of A12 grade. These defects had especially strong development when sulfur content in steel was of more than 0.10%. To improve the quality of cast metal, it is necessary to have the ratio of the manganese content to the sulfur content in the metal more than eight.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2013 ◽  
Vol 652-654 ◽  
pp. 2450-2454
Author(s):  
Zhi Hong Zhang ◽  
Guo Guang Cheng

The paper describes multi-section round bloom casting using external MEMS, equipped with max section D600mm and min D280mm mold, the center line of D280mm mold not coincident with the axis of stirrer coils. it is exist eccentric electromagnetic stirring of mold which section less than max D600mm, a mathematical model of MEMS has been established, the index of central segregation of D280mm macrostructure had decreased less than 1.12 by optimized parameters of electromagnetic stirring and SEN immerse depth, in the end, the quality of round bloom had improved.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


Sign in / Sign up

Export Citation Format

Share Document