scholarly journals Effects of confinement pressure on the mechanical behavior of an oil well cement paste

Author(s):  
Victor Nogueira Lima ◽  
Flávio de Andrade Silva ◽  
Hans Joakim Skadsem ◽  
Katherine Beltrán-Jiménez ◽  
Jonas Kristoffer Sunde
2014 ◽  
Vol 692 ◽  
pp. 433-438 ◽  
Author(s):  
Jing Fu Zhang ◽  
Jin Long Yang ◽  
Kai Liu ◽  
Bo Wang ◽  
Rui Xue Hou

Carbon dioxide CO2could corrode the oil well cement paste matrix under agreeable moisture and pressure condition in deep oil wells, which could decrease the compressive strength and damage the annular seal reliability of cement paste matrix. The problem of oil well cement paste matrix corrosion by CO2was researched in the paper for obtain the feasible corrosion prevention technical measures. The microstructure and compressive strength of corroded cement paste matrix were examined by scanning electron microscopeSEMand strength test instrument etc. under different corrosion conditions. The mechanism and effect law of corrosion on oil well cement paste matrix by CO2were analyzed. And the suitable method to protect CO2corrosion in deep oil wells was explored. The results show that the corrosion mechanism of cement paste matrix by CO2was that the wetting phase CO2could generate chemical reaction with original hydration products produced from cement hydration, which CaCO3were developed and the original composition and microstructure of cement paste matrix were destroyed. The compressive strength of corrosion cement paste matrix always was lower than that of un-corrosion cement paste matrix. The compressive strength of corrosion cement paste matrix decreased with increase of curing temperature and differential pressure. The corroded degree of cement paste matrix was intimately related with the compositions of cement slurry. Developing and design anti-corrosive cement slurry should base on effectively improving the compact degree and original strength of cement paste matrix. The compounding additive R designed in the paper could effectively improve the anti-corrosive ability of cement slurry.


2016 ◽  
Vol 847 ◽  
pp. 451-455
Author(s):  
Jing Fu Zhang ◽  
Jun Dong Chen ◽  
Yu Wang ◽  
Ying Bo Lv

To design oil well cement paste system and ensure well cementation quality of adjustment well in work area of tertiary oil recovery (EOR), the composition, microstructure and strength of cement paste matrix eroded by producing water were tested and studied by HTHP Curing Chamber, HTHP corrosion tester, X-ray diffraction, scanning electron microscope (SEM), universal testing compressor and some other laboratory equipment according to the condition that producing water contains sulfate (SO42-) and bicarbonate (HCO3-). The corrosion law and mechanism of oil well cement paste matrix were analyzed. The problem for designing corrosion resistance oil well cement paste system was investigated. The corrosion law and mechanism of oil well cement paste matrix by SO42- and HCO3- were raised. The corrosion resistant oil well cement paste system was designed, which was suitable to the adjustment well in area of EOR in Daqing. The results show that the compositions of cement paste matrix changed after corrosion by SO42- and HCO3- for a long term. The secondary gypsum, ettringite and calcite were produced, which changed the microstructures and declined the compressive strength of cement paste matrix. The change degree of compressive strength of cement paste matrix was affected by corrosion media concentration, corrosion time and other conditions. The higher concentration of corrosion media and the longer of corrosion time were, the greater decline of cement strength occurred. The formula of corrosion resistance oil well cement paste system was designed, for which the high sulfate resistant cement as architectural substrate and the PZW as admixtures were used to improve the strength and penetration resistance ability of cement.


2019 ◽  
Vol 117 ◽  
pp. 91-102 ◽  
Author(s):  
Nicolaine Agofack ◽  
Siavash Ghabezloo ◽  
Jean Sulem ◽  
André Garnier ◽  
Christophe Urbanczyk

Sign in / Sign up

Export Citation Format

Share Document