Itô formula for one-dimensional continuous-time quantum random walk

2014 ◽  
Vol 414 ◽  
pp. 154-162 ◽  
Author(s):  
Yuanbao Kang ◽  
Caishi Wang
2019 ◽  
Vol 28 (11) ◽  
pp. 110302
Author(s):  
Maimaitiyiming Tusun ◽  
Yang Wu ◽  
Wenquan Liu ◽  
Xing Rong ◽  
Jiangfeng Du

Author(s):  
François David ◽  
Thordur Jonsson

Abstract We study continuous time quantum random walk on a comb with infinite teeth and show that the return probability to the starting point decays with time t as t−1. We analyse the diffusion along the spine and into the teeth and show that the walk can escape into the teeth with a finite probability and goes to infinity along the spine with a finite probability. The walk along the spine and into the teeth behaves qualitatively as a quantum random walk on a line. This behaviour is quite different from that of classical random walk on the comb.


1994 ◽  
Vol 49 (12) ◽  
pp. 1241-1247 ◽  
Author(s):  
G. Zumofen ◽  
J. Klafter

Abstract We study transport in dynamical systems characterized by intermittent chaotic behavior with coexistence of dispersive motion due to periods of localization, and of enhanced diffusion due to periods of laminar motion. This transport is discussed within the continuous-time random walk approach which applies to both dispersive and enhanced motions. We analyze the coexistence for the standard map and for a one-dimensional map.


Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


2007 ◽  
Vol 05 (06) ◽  
pp. 781-793 ◽  
Author(s):  
WILLIAM ADAMCZAK ◽  
KEVIN ANDREW ◽  
LEON BERGEN ◽  
DILLON ETHIER ◽  
PETER HERNBERG ◽  
...  

A classical lazy random walk on cycles is known to mix with the uniform distribution. In contrast, we show that a continuous-time quantum walk on cycles exhibits strong non-uniform mixing properties. First, we prove that the instantaneous distribution of a quantum walk on most even-length cycles is never uniform. More specifically, we prove that a quantum walk on a cycle Cnis not instantaneous uniform mixing, whenever n satisfies either: (a) n = 2u, for u ≥ 3; or (b) n = 2uq, for u ≥ 1 and q ≡ 3 (mod 4). Second, we prove that the average distribution of a quantum walk on any Abelian circulant graph is never uniform. As a corollary, the average distribution of a quantum walk on any standard circulant graph, such as the cycles, complete graphs, and even hypercubes, is never uniform. Nevertheless, we show that the average distribution of a quantum walk on the cycle Cnis O(1/n)-uniform.


2016 ◽  
Vol 2 (1-2) ◽  
pp. 189-206 ◽  
Author(s):  
Diego Torrejon ◽  
Maria Emelianenko ◽  
Dmitry Golovaty

2019 ◽  
Vol 6 (11) ◽  
pp. 191423
Author(s):  
Julia Stadlmann ◽  
Radek Erban

A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences x n +1 = F ( x n ) generated by such maps display rich dynamical behaviour. The integer parts ⌊ x n ⌋ give a discrete-time random walk for a suitable initial distribution of x 0 and converge in certain limits to Brownian motion or more general Lévy processes. Furthermore, for certain shift-periodic maps with small holes on [0,1], convergence of trajectories to a continuous-time random walk is shown in a limit.


Sign in / Sign up

Export Citation Format

Share Document