scholarly journals Exact solution of Smoluchowski’s equation for reorientational motion in Maier–Saupe potential

2015 ◽  
Vol 419 ◽  
pp. 373-384 ◽  
Author(s):  
A.E. Sitnitsky

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Manli Yang ◽  
Zhiming Lu ◽  
Jie Shen

Exact solutions of the bicomponent Smoluchowski’s equation with a composition-dependent additive kernelK(va,vb;va′,vb′)=α(va+va′)+(vb+vb′)are derived by using the Laplace transform for any initial particle size distribution. The exact solution for an exponential initial distribution is then used to analyse the effects of parameterαon mixing degree of such bicomponent mixtures and the conditional distribution of the first component for particles with given mass. The main finding is that the conditional distribution of large particles at larger time is a Gaussian function which is independent of the parameterα.



1986 ◽  
Vol 47 (6) ◽  
pp. 1029-1034 ◽  
Author(s):  
J.C. Parlebas ◽  
R.H. Victora ◽  
L.M. Falicov


Author(s):  
Yang Yih Chen ◽  
Frederick L. W. Tang
Keyword(s):  


2006 ◽  
Vol 106 (2) ◽  
pp. 115-130 ◽  
Author(s):  
K. R. Rajagopal ◽  
G. Saccomandi
Keyword(s):  






2004 ◽  
Vol 16 (1-3) ◽  
pp. 251-257
Author(s):  
J.-L. Estivalezes ◽  
G. Chanteperdrix


2007 ◽  
Vol 7 (1) ◽  
pp. 25-47 ◽  
Author(s):  
I.P. Gavrilyuk ◽  
M. Hermann ◽  
M.V. Kutniv ◽  
V.L. Makarov

Abstract The scalar boundary value problem (BVP) for a nonlinear second order differential equation on the semiaxis is considered. Under some natural assumptions it is shown that on an arbitrary finite grid there exists a unique three-point exact difference scheme (EDS), i.e., a difference scheme whose solution coincides with the projection of the exact solution of the given differential equation onto the underlying grid. A constructive method is proposed to derive from the EDS a so-called truncated difference scheme (n-TDS) of rank n, where n is a freely selectable natural number. The n-TDS is the basis for a new adaptive algorithm which has all the advantages known from the modern IVP-solvers. Numerical examples are given which illustrate the theorems presented in the paper and demonstrate the reliability of the new algorithm.



Sign in / Sign up

Export Citation Format

Share Document