Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach

2020 ◽  
Vol 588 ◽  
pp. 412169 ◽  
Author(s):  
J. Divya ◽  
A. Pramothkumar ◽  
S. Joshua Gnanamuthu ◽  
D.C. Bernice Victoria ◽  
P.C. Jobe prabakar
2019 ◽  
Vol 19 (11) ◽  
pp. 7139-7148 ◽  
Author(s):  
Suresh Sagadevan ◽  
Zaira Zaman Chowdhury ◽  
Mohd. Rafie Bin Johan ◽  
Fauziah Abdul Aziz ◽  
L. Selva Roselin ◽  
...  

In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO2). As synthesized SnO2 nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO2. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO2 lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO2 NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO2 nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO2 nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.


2008 ◽  
Vol 466 (1-2) ◽  
pp. 26-30 ◽  
Author(s):  
Z.M. Tian ◽  
S.L. Yuan ◽  
J.H. He ◽  
P. Li ◽  
S.Q. Zhang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Arshad Javid ◽  
Muhammad Sajjad ◽  
Saeed Ahmad ◽  
Muhammad Azhar Shahid Khan ◽  
Khalid Nadeem ◽  
...  

Abstract In this research work, polymer coated magnetic nanoparticles were prepared by co-precipitation method. The samples were characterized by XRD, SEM, EDS, VSM and two probe DC conductivity measurements. XRD pattern indicated the existence of a sole cubic phase of Fe3O4 with Miller indices (2 2 0), (3 1 1), (5 1 1), (4 4 0). An average size of magnetic nanoparticles was about 22.9 nm and it was reduced to 21.3 nm and 19.4 nm after 1 wt. %. and 2 wt. % coating of PEG-6000, respectively. The morphology and size of the samples were investigated by scanning electron microscope (SEM). EDX spectra confirmed the coating of PEG on magnetic nanoparticles. Magnetic properties were examined by vibrating sample magnetometer (VSM). Saturation magnetization (M s ) decreased as the concentration of PEG increased in the magnetic material. Electrical properties of uncoated and polymer coated Fe3O4 nanoparticles were studied by two-probe conductivity meter. This study concluded that the thermal flow of charge in polymer coated magnetic nanoparticles can be evaluated at micro and nano level.


Optik ◽  
2016 ◽  
Vol 127 (20) ◽  
pp. 9917-9925 ◽  
Author(s):  
Annie Vinosha P. ◽  
Ansel Mely L. ◽  
Emima Jeronsia J. ◽  
Raja K. ◽  
Queen Sahaya Tamilarsi D. ◽  
...  

2012 ◽  
Vol 510-511 ◽  
pp. 221-226 ◽  
Author(s):  
M. Akram ◽  
M. Anis-ur-Rehman ◽  
M. Mubeen ◽  
M. Ali

Non toxicity, bio compatibility and nanometer sizes regime which is comparable to the size of a cell, makes nanocrystalline Co ferrites particles very proficient. In the present research Zn doped cobalt ferrites were prepared by the chemical co-precipitation method and characterized by X-ray diffraction (XRD) at room temperature for structural analysis. X-ray diffraction patterns confirmed the FCC spinel structure of synthesized particles. Crystallite sizes were calculated from the most intense peak (311) using the Debye-Scherrer formula. The obtained crystallite sizes were in nanometer range for all the samples synthesized at reaction temperature of 70°C. Then samples were sintered at 550°C for 2 hours, characterized again by X-ray diffraction at room temperature. The crystallite sizes and lattice constants for all the samples were calculated again from the data obtained by XRD. DC electrical resistivity and AC electrical transport properties were analyzed. The magnetic properties such as coercivity (Hc) and remanence (Mr) of Co1-xZnxFe2O4for x = 0.0, 0.2, 0.4 were measured at room temperature by vibrating sample magnetometer. Coercivity and remanence were found maximum with minimum value of Zn in Co1-xZnxFe2O4.Observed structural and conduction properties of synthesized nanomaterials were correlated.


Sign in / Sign up

Export Citation Format

Share Document