Effect of external magnetic field on superconducting and spin density wave gaps of high-Tc superconductors

2009 ◽  
Vol 469 (13) ◽  
pp. 721-727 ◽  
Author(s):  
B. Pradhan ◽  
B.K. Raj ◽  
G.C. Rout
2012 ◽  
Vol 190 ◽  
pp. 478-481
Author(s):  
S.A. Gudin ◽  
M.I. Kurkin ◽  
A.V. Gapontsev

Conditions of coexistence of Fe/Cr/Fe film states with parallel and antiparallel Fe layer magnetisations orientation are established. The transition from antiparallel to parallel orientation in external magnetic field is caused with Cr layer spin density wave phase change when wave node in the centre of Cr layer is substituted with wave antinode. The coexistence of these two states means that Fe/Cr/Fe film ferromagnetic state created with external magnetic field retains after the switching this field off. This phenomenon will manifest itself in the fact that magnetisation curve of initially antiferromagnetic Fe/Cr/Fe film will go outside the hysteresis loop of it's remagnetisation in ferromagnetic state created by external field.


1995 ◽  
Vol 52 (22) ◽  
pp. 15983-15991 ◽  
Author(s):  
J. L. Musfeldt ◽  
M. Poirier ◽  
P. Batail ◽  
C. Lenoir

1993 ◽  
Vol 07 (19) ◽  
pp. 3415-3421 ◽  
Author(s):  
ALEXANDRE S. ROZHAVSKY

A field description of spin-density-wave (SDW) in a quasi-two-dimensional metal with open Fermi surface in magnetic field, is proposed. The SDW transition temperature, T c (H), and the Hall conductivity σxy, are calculated. The dependence T c (H) is found to be different from that of the Bardeen-Cooper-Schrieffer model, in particular, a threshold field, H c , found its natural explanation. It is proved that the quantized Hall conductivity arises from the chiral anomaly terms in the effective action provided there is pinning of chemical potential in the gap of extended states.


2002 ◽  
Vol 12 (9) ◽  
pp. 389-389
Author(s):  
W. G. Clark ◽  
F. Zamborsky ◽  
B. Alavi ◽  
P. Vonlanthen ◽  
W. Moulton ◽  
...  

We report proton NMR measurements of the effect of very high magnetic fields up to 44.7 T (1.9 GHz) on the spin density wave (SDW) transition of the organic conductor TMTSF2PF6. Up to 1.8 GHz, no effect of critical slowing close to the transition is seen on the proton relaxation rate (1/T1), which is determined by the SDW fluctuations associated with the phase transition at the NMR frequency. Thus, the correlation time for such fluctuations is less than $1O^{-10}$s. A possible explanation for the absence of longer correlation times is that the transition is weakly first order, so that the full critical divergence is never achieved. The measurements also show a dependence of the transition temperature on the orientation of the magnetic field and a quadratic dependence on its magnitude that agrees with earlier transport measurements at lower fields. The UCLA part of this work was supported by NSF Grant DMR-0072524.


Sign in / Sign up

Export Citation Format

Share Document