hall conductivity
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 103)

H-INDEX

39
(FIVE YEARS 9)

2022 ◽  
pp. 413626
Author(s):  
Zhengchun Zou ◽  
Pan Zhou ◽  
Rui Tan ◽  
Wenqi Li ◽  
Zengsheng Ma ◽  
...  

Author(s):  
Kulsoom Rahim ◽  
Humaira Akram ◽  
Kashif Sabeeh

Abstract In this work we investigate the influence of quadratic in momentum term (Schrodinger term) on magneto-transport properties of thin film topological insulators. The Schrodinger term modifies the Dirac cones into an hourglass shape which results in inter and intraband Landau levels crossings. Breaking of the particle-hole symmetry in Landau level spectrum in the presence of k2 term leads to asymmetrical density of states profile. We calculate collisional and Hall conductivity for mixed Dirac-Schrodinger system in linear response regime and show oscillatory behavior in collisional con- ductivity, while Zeeman and hybridization terms provide a doubly split peak structure in collisional conductivity for the case m/me → ∞. We calculate Hall conductivity analytically and show that for mixed system filling factor is not symmetric about Fermi energy unlike symmetic plateaus for pure Dirac case.


2021 ◽  
Vol 53 (3) ◽  
pp. 369-379
Author(s):  
Abdul-Muizz Pradipto ◽  
Kohji Nakamura

The intrinsic spin Hall effect in the bulk systems of late  transition metals (Os, Ir, Pt, and Au) as well as the Pt-based superlattices were investigated by using first-principle calculations. By comparing the computed spin Hall conductivities of Pt−M superlattices (M=Os, Ir, and Au) with different compositions and those obtained from atomic bulk composition, we saw that the spin Hall conductivities (SHCs) follow the behavior described by the Slater-Pauling curve, the maximum of which is at pure Pt bulk. From the examination of the band structures of the considered systems, we found that the origin of this behavior comes from the variation of the band structures as a direct consequence of the change of the number of electrons and hybridization effects.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Xuanting Ji ◽  
Yan Liu ◽  
Ya-Wen Sun ◽  
Yun-Long Zhang

Abstract We present effective field theories for the weakly coupled Weyl-Z2 semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the Z2 anomaly and possess topological quantum phase transitions from the Weyl-Z2 semimetal phases to partly or fully topological trivial phases. We find that the topological phase transition is characterized by the anomalous transport parameters, i.e. the anomalous Hall conductivity and the Z2 anomalous Hall conductivity. These two parameters are nonzero at the Weyl-Z2 semimetal phase and vanish at the topologically trivial phases. In the holographic case, the different behavior between the two anomalous transport coefficients is discussed. Our work reveals the novel phase structure of strongly interacting Weyl-Z2 semimetal with two pairs of nodes.


2021 ◽  
Vol 33 (48) ◽  
pp. 2170375
Author(s):  
Sukriti Singh ◽  
Jonathan Noky ◽  
Shaileyee Bhattacharya ◽  
Praveen Vir ◽  
Yan Sun ◽  
...  
Keyword(s):  

Author(s):  
Wafa Afzal ◽  
Zengji Yue ◽  
Zhi Li ◽  
Michael Fuhrer ◽  
Xiaolin Wang
Keyword(s):  

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Bartlomiej Kiczek ◽  
Marek Rogatko ◽  
Karol I. Wysokinski

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Y. Hayashi ◽  
Y. Okamura ◽  
N. Kanazawa ◽  
T. Yu ◽  
T. Koretsune ◽  
...  

AbstractPhysics of Weyl electrons has been attracting considerable interests and further accelerated by recent discoveries of giant anomalous Hall effect (AHE) and topological Hall effect (THE) in several magnetic systems including non-coplanar magnets with spin chirality or small-size skyrmions. These AHEs/THEs are often attributed to the intense Berry curvature generated around the Weyl nodes accompanied by band anti-crossings, yet the direct experimental evidence still remains elusive. Here, we demonstrate an essential role of the band anti-crossing for the giant AHE and THE in MnGe thin film by using the terahertz magneto-optical spectroscopy. The low-energy resonance structures around ~ 1.2 meV in the optical Hall conductivity show the enhanced AHE and THE, indicating the emergence of at least two distinct anti-crossings near the Fermi level. The theoretical analysis demonstrates that the competition of these resonances with opposite signs is a cause of the strong temperature and magnetic-field dependences of observed DC Hall conductivity. These results lead to the comprehensive understanding of the interplay among the transport phenomena, optical responses and electronic/spin structures.


Sign in / Sign up

Export Citation Format

Share Document