threshold field
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
T. Lahiri ◽  
S. K. Pushkar ◽  
P. Poddar

Abstract Freedericksz effect is investigated theoretically for a ferronematic liquid crystal, which is a colloidal suspension of ferromagnetic nanoparticles in a nematic fluid. Considering a splay type Freedericksz geometry, weak anchoring conditions are assumed at the cell boundaries. The specific nature of this anchoring reveals a rich variety of stable ferronematic phases, which include uniform, distorted and saturated states. Apart from weak anchoring conditions at the cell boundaries, soft planar anchoring is assumed for the mesogenic molecules at the surface of a nanoparticle. The interplay between these two anchoring phenomena along with Frank type elastic theory determine the values of Freedericksz threshold between various ferronematic states. It is found that compared to relatively strong anchoring for the mesogens both at the cell boundaries and at the surface of the nanoparticles, weak anchoring significantly reduces the Freedericksz threshold field. Landau theory is then utilized to understand the nature of transition between different ferronematic states. Based on the phenomenon of segregation effect, these transitions are found to be either first order or second order in nature. The present theory is also extended to non-ferromagnetic nanoparticles and significant reduction in Freedericksz threshold is obtained. Finally, these results are corroborated with experimental findings.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2643
Author(s):  
Peter Bury ◽  
Marek Veveričík ◽  
František Černobila ◽  
Matúš Molčan ◽  
Katarína Zakuťanská ◽  
...  

The effect of the liquid crystalline host on structural changes in magnetosomes based on ferronematics is studied using the surface acoustic wave (SAW) technique supported by some capacitance and light transmission measurements. The measurement of the attenuation response of SAW propagating along the interface between LC and the piezoelectric substrate is used to study processes of structural changes under magnetic field. The magnetosome nanoparticles of the same volume concentration were added to three different nematic LCs, 5CB, 6CB, and E7. Unlike to undoped LCs, the different responses of SAW attenuation under the influence of magnetic and electric fields in LCs doped with magnetosomes were observed due to characteristic structural changes. The decrease of the threshold field for doped LCs as compared with pure LCs and slight effects on structural changes were registered. The threshold magnetic fields of LCs and composites were determined from capacitance measurements, and the slight shift to lower values was registered for doped LCs. The shift of nematic-isotropic transition was registered from dependencies of SAW attenuation on temperature. The acoustic anisotropy measurement approved the previous supposition about the role of bulk viscosity in used SAW measurements. In addition, capacitance and light transmition investigations supported SAW results and pointed out conclusions about their magnetic field behavior. Obtained results are discussed and confronted with previous ones and coincide well with those observed using acoustic, optical, or dielectric techniques.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Gregory Gold ◽  
David A. McGady ◽  
Subodh P. Patil ◽  
Valeri Vardanyan

Abstract Particle-antiparticle pairs can be produced by background electric fields via the Schwinger mechanism provided they are unconfined. If, as in QED in (3+1)-d these particles are massive, the particle production rate is exponentially suppressed below a threshold field strength. Above this threshold, the energy for pair creation must come from the electric field itself which ought to eventually relax to the threshold strength. Calculating this relaxation in a self-consistent manner, however, is difficult. Chu and Vachaspati addressed this problem in the context of capacitor discharge in massless QED2 [1] by utilizing bosonization in two-dimensions. When the bare fermions are massless, the dual bosonized theory is free and capacitor discharge can be analyzed exactly [1], however, special care is required in its interpretation given that the theory exhibits confinement. In this paper we reinterpret the findings of [1], where the capacitors Schwinger-discharge via electrically neutral dipolar meson-production, and generalize this to the case where the fermions have bare masses. Crucially, we note that when the initial charge of the capacitor is large compared to the charge of the fermions, Q » e, the classical equation of motion for the bosonized model accurately characterizes the dynamics of discharge. For massless QED2, we find that the discharge is suppressed below a critical plate separation that is commensurate with the length scale associated with the meson dipole moment. For massive QED2, we find in addition, a mass threshold familiar from (3+1)-d, and show the electric field relaxes to a final steady state with a magnitude proportional to the initial charge. We discuss the wider implications of our findings and identify challenges in extending this treatment to higher dimensions.


2021 ◽  
Vol 118 (40) ◽  
pp. e2104724118
Author(s):  
Zeng Tao Liu ◽  
Yan Shi ◽  
Yongfeng Zhao ◽  
Hugues Chaté ◽  
Xia-qing Shi ◽  
...  

Virtually all of the many active matter systems studied so far are made of units (biofilaments, cells, colloidal particles, robots, animals, etc.) that move even when they are alone or isolated. Their collective properties continue to fascinate, and we now understand better how they are unique to the bulk transduction of energy into work. Here we demonstrate that systems in which isolated but potentially active particles do not move can exhibit specific and remarkable collective properties. Combining experiments, theory, and numerical simulations, we show that such subcritical active matter can be realized with Quincke rollers, that is, dielectric colloidal particles immersed in a conducting fluid subjected to a vertical DC electric field. Working below the threshold field value marking the onset of motion for a single colloid, we find fast activity waves, reminiscent of excitable systems, and stable, arbitrarily large self-standing vortices made of thousands of particles moving at the same speed. Our theoretical model accounts for these phenomena and shows how they can arise in the absence of confining boundaries and individual chirality. We argue that our findings imply that a faithful description of the collective properties of Quincke rollers need to consider the fluid surrounding particles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aneesh Venugopal ◽  
R. H. Victora

AbstractMagnon-phase is an important entity in the parametric processes involving magnons, yet the general qualitative and quantitative consequences of the phase-noise on nonlinear properties remain far from understood. In the current simulation-based theoretical study, we explore the direct impact the phase-noise has on non-linearity. We use analytical techniques usually employed in the study of hydrodynamics to explain the magnon-based nonlinear phenomena. The behavior of the threshold-field and growth rate of the magnons in the presence of Gaussian phase-noise is analytically predicted. These predictions are verified by micromagnetic simulations. Such results are of crucial importance in the design and engineering of both traditional and futuristic devices.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
W Zhou ◽  
Christopher Bumby ◽  
M Staines ◽  
Q Li ◽  
...  

Dynamic resistance occurs when HTS (high-temperature superconductor) coated conductors carry dc current under ac magnetic field. This dissipative effect can play a critical role in many HTS applications. Here, we report on dynamic resistance measurements of a four-tape YBCO stack comprising 4-mm-wide coated conductors, which experience an applied ac perpendicular magnetic field with an amplitude of up to 100 mT. Each tape within the stack carries the same dc current. The magnetic field amplitude, the frequency of the magnetic field, and the dc current magnitude are varied to investigate the influence of these parameters on the dynamic resistance. We find that the threshold field of the stack is significantly larger than that of a single tape when dc current is small, which we attribute to coherent shielding effects from circulating currents present in each wire in the stack. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
W Zhou ◽  
Christopher Bumby ◽  
M Staines ◽  
Q Li ◽  
...  

Dynamic resistance occurs when HTS (high-temperature superconductor) coated conductors carry dc current under ac magnetic field. This dissipative effect can play a critical role in many HTS applications. Here, we report on dynamic resistance measurements of a four-tape YBCO stack comprising 4-mm-wide coated conductors, which experience an applied ac perpendicular magnetic field with an amplitude of up to 100 mT. Each tape within the stack carries the same dc current. The magnetic field amplitude, the frequency of the magnetic field, and the dc current magnitude are varied to investigate the influence of these parameters on the dynamic resistance. We find that the threshold field of the stack is significantly larger than that of a single tape when dc current is small, which we attribute to coherent shielding effects from circulating currents present in each wire in the stack. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
W Zhou ◽  
Q Li ◽  
M Yao ◽  
J Fang ◽  
...  

Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ∼12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles. This is the Accepted Manuscript version of an article accepted for publication in 'Superconductor Science and Technology'. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6668/aaa49e.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
R Toyomoto ◽  
N Amemiya ◽  
X Zhang ◽  
Christopher Bumby

Superconducting high-Tc coated conductor (CC) wires comprise a ceramic thin film with a large aspect ratio. This geometry can lead to significant dissipative losses when exposed to an alternating magnetic field. Here we report experimental measurements of the 'dynamic resistance' of commercially available SuperPower and Fujikura CC wires in an AC perpendicular field. The onset of dynamic resistance occurs at a threshold field amplitude, which is determined by the total DC transport current and the penetration field of the conductor. We show that the field-dependence of the normalised magnetisation loss provides an unambiguous value for this threshold field at zero transport current. From this insight we then obtain an expression for the dynamic resistance in perpendicular field. This approach implies a linear relationship between dynamic resistance and applied field amplitude, and also between threshold field and transport current and this is consistent with our experimental data. The analytical expression obtained yields values that closely agree with measurements obtained across a wide range of frequencies and transport currents, and for multiple CC wires produced by different wire manufacturers and with significantly differing dimensions and critical currents. We further show that at high transport currents, the measured DC resistance includes an additional nonlinear term which is due to flux-flow resistance incurred by the DC transport current. This occurs once the field-dependent critical current of the wire falls below the DC transport current for part of each field cycle. Our results provide an effective and simple approach to calculating the dynamic resistance of a CC wire, at current and field magnitudes consistent with those expected in superconducting machines. This is the Accepted Manuscript version of an article accepted for publication in 'Superconductor Science and Technology'. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6668/aa54e5.


Sign in / Sign up

Export Citation Format

Share Document