scholarly journals On scaling laws in turbulent magnetohydrodynamic Rayleigh–Benard convection

2008 ◽  
Vol 237 (24) ◽  
pp. 3233-3236 ◽  
Author(s):  
Sagar Chakraborty
2019 ◽  
Vol 6 (9) ◽  
pp. 1580-1592 ◽  
Author(s):  
Meredith Plumley ◽  
Keith Julien

1997 ◽  
Vol 335 ◽  
pp. 111-140 ◽  
Author(s):  
S. CIONI ◽  
S. CILIBERTO ◽  
J. SOMMERIA

An experimental study of Rayleigh–Bénard convection in the strongly turbulent regime is presented. We report results obtained at low Prandtl number (in mercury, Pr = 0.025), covering a range of Rayleigh numbers 5 × 106 < Ra < 5 × 109, and compare them with results at Pr∼1. The convective chamber consists of a cylindrical cell of aspect ratio 1.Heat flux measurements indicate a regime with Nusselt number increasing as Ra0.26, close to the 2/7 power observed at Pr∼1, but with a smaller prefactor, which contradicts recent theoretical predictions. A transition to a new turbulent regime is suggested for Ra ≃ 2 × 109, with significant increase of the Nusselt number. The formation of a large convective cell in the bulk is revealed by its thermal signature on the bottom and top plates. One frequency of the temperature oscillation is related to the velocity of this convective cell. We then obtain the typical temperature and velocity in the bulk versus the Rayleigh number, and compare them with similar results known for Pr∼1.We review two recent theoretical models, namely the mixing zone model of Castaing et al. (1989), and a model of the turbulent boundary layer by Shraiman & Siggia (1990). We discuss how these models fail at low Prandtl number, and propose modifications for this case. Specific scaling laws for fluids at low Prandtl number are then obtained, providing an interpretation of our experimental results in mercury, as well as extrapolations for other liquid metals.


2012 ◽  
Vol 711 ◽  
pp. 281-305 ◽  
Author(s):  
J. D. Scheel ◽  
E. Kim ◽  
K. R. White

AbstractWe present the results from numerical simulations of turbulent Rayleigh–Bénard convection for an aspect ratio (diameter/height) of 1.0, Prandtl numbers of 0.4 and 0.7, and Rayleigh numbers from $1\ensuremath{\times} 1{0}^{5} $ to $1\ensuremath{\times} 1{0}^{9} $. Detailed measurements of the thermal and viscous boundary layer profiles are made and compared to experimental and theoretical (Prandtl–Blasius) results. We find that the thermal boundary layer profiles disagree by more than 10 % when scaled with the similarity variable (boundary layer thickness) and likewise disagree with the Prandtl–Blasius results. In contrast, the viscous boundary profiles collapse well and do agree (within 10 %) with the Prandtl–Blasius profile, but with worsening agreement as the Rayleigh number increases. We have also investigated the scaling of the boundary layer thicknesses with Rayleigh number, and again compare to experiments and theory. We find that the scaling laws are very robust with respect to method of analysis and they mostly agree with the Grossmann–Lohse predictions coupled with laminar boundary layer theory within our numerical uncertainty.


Sign in / Sign up

Export Citation Format

Share Document