convective cell
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Mingyun Cao ◽  
Patrick H Diamond

Abstract An analysis of instability dynamics in a stochastic magnetic field is presented for the tractable case of the resistive interchange. Externally prescribed static magnetic perturbations convert the eigenmode problem to a stochastic differential equation, which is solved by the method of averaging. The dynamics are rendered multi-scale, due to the size disparity between the test mode and magnetic perturbations. Maintaining quasi-neutrality at all orders requires that small-scale convective cell turbulence be driven by disparate scale interaction. The cells in turn produce turbulent mixing of vorticity and pressure, which is calculated by fluctuation-dissipation type analyses, and are relevant to pump-out phenomena. The development of correlation between the ambient magnetic perturbations and the cells is demonstrated, showing that turbulence will ‘lock on’ to ambient stochasticity. Magnetic perturbations are shown to produce a magnetic braking effect on vorticity generation at large scale. Detailed testable predictions are presented. The relations of these findings to the results of available simulations and recent experiments are discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1511
Author(s):  
Hui Zheng ◽  
Yuchun Zhao ◽  
Yipeng Huang ◽  
Wei Zhang ◽  
Changrong Luo ◽  
...  

The merging of a fast-moving bow echo with a convective cell of a hook-echo signature was studied by using polarimetric radar detections. Gusts with wind speeds near 35 m s–1 were recorded by the surface station, which caused significant damage. A convective cell with a mesovortex signature, which is hereafter referred to as a mini-supercell, was observed over the northeast of the bow echo before the convective merging. It was found that the mesovortex possessed cyclonic circulation and resembled a supercell-like feature. The merging of the bow echo and the mini-supercell strengthened the updraft near the apex of the bow echo. The enhanced updraft was also demonstrated by the appearance of a differential reflectivity (ZDR) column with a topmost height of 4 km above the melting layer (~4 km). The bow was separated into northern and southern sectors after merging with the mini-supercell, leading to the gusty wind over the surface of the south sector.


2021 ◽  
Vol 928 ◽  
Author(s):  
Hao Fu

The linear convective instability of a mixture of dry air, water vapour and liquid water, with a stable unsaturated layer residing on an unstable saturated layer, is studied. It may serve as a prototype model for understanding the instability that causes mixing at the top of stratocumulus cloud or fog. Such a cloud-clear air interface is modelled as an infinitely thin saturation interface where radiative and evaporative cooling take place. The interface position is determined by the Clausius–Clapeyron equation, and can undulate with the evolution of moisture and temperature. In the small-amplitude regime two physical mechanisms are revealed. First, the interface undulation leads to the undulation of the cooling source, which destabilizes the system by superposing a vertical dipole heating anomaly on the convective cell. Second, the evolution of the moisture field induces non-uniform evaporation at the interface, which stabilizes the system by introducing a stronger evaporative cooling in the ascending region and vice versa in the descending region. These two mechanisms are competing, and their relative contribution to the instability is quantified by theoretically estimating their relative contribution to buoyancy flux tendency. When there is only evaporative cooling, the two mechanisms break even, and the marginal stability curve remains the same as the classic two-layer Rayleigh–Bénard convection with a fixed cooling source.


2021 ◽  
Vol 12 (3) ◽  
pp. 455-470
Author(s):  
L. I. Lobkovsky ◽  
M. M. Ramazanov ◽  
V. D. Kotelkin

A geodynamic model of upper mantle convection related to the Pacific subduction zone is mathematically substantiated and applied to investigate the Cretaceous-Cenozoic evolution of Central East Asia (CEA) and the Arctic. We present a solution for the two-dimensional stationary problem of thermal convection in the upper mantle layer, considering different Rayleigh numbers and taking into account the influence of the subduction process and lithospheric movements along the upper mantle base. We describe the results of 3D modeling of nonstationary upper mantle convection in a subduction zone. Our data give grounds to propose explanations for the entire spectrum of tectonic-magmatic processes developing within CEA in the Cenozoic and the Arctic in the Upper Cretaceous and Cenozoic. We discuss the reasons why the lithosphere in CEA and the Arctic is generally shifting towards the Pacific subduction zone, considering the presence of separate magmatic provinces and rift zones. In our opinion, this is due to the existence of a large horizontally elongated convective cell, which interior is composed of smaller isometric cells. This long cell creates the effect of conveyor dragging of the lithosphere, while its internal cells produce the effect of upper mantle plumes.


2021 ◽  
Author(s):  
George Pacey ◽  
Stephan Pfahl ◽  
Lisa Schielicke

<p>Cold fronts provide an environment favourable for convective initiation in the mid-latitudes. Some studies also show the presence of a cold front can increase the chance of certain convective hazards, such as hail and heavy rain. Convection initiates in three locations in respect to cold fronts: <em>ahead</em> of the cold front in the warm sector of the cyclone, directly <em>at</em> the cold frontal boundary and also <em>behind</em> the cold front. Previous literature has typically focused on each initiation location independently, thus a comprehensive study investigating the link between cold fronts and convection is currently lacking from literature. This study seeks to better understand the climatology, scale interactions and forcing mechanisms of convection at each initiation location relative to the front (i.e., behind, at, ahead).</p><p>Automatic front detection methods are applied to reanalysis data and a convective cell-tracking dataset from the German Weather Service is used to build a climatology of cold fronts and convection between April–September. Convective cells are found to initiate most commonly 200–300km ahead of the cold front during late afternoon. Cells behind the front primarily initiate in north-western Germany and exhibit a strong diurnal cycle. On the contrary, cells at and ahead of the front initiate most frequently in southern Germany and exhibit a less prominent diurnal cycle, especially for cells at the frontal boundary. Lightning probability decreases with closing proximity to the cold front and the average number of cell initiations per day is significantly higher on days with cold fronts opposed to days without. The next stages of research will investigate the relative importance of various forcing mechanisms on the development of convective cells at different cell-front positions.</p>


2021 ◽  
Author(s):  
Ulrich Blahak ◽  
Julia Keller ◽  

<p>There are different "optimal" forecast methods for different forecast lead times and different weather phenomena. Focusing on precipitation and convective events up to some hours ahead, radar extrapolation techniques (Nowcasting) show good skill up to about 2 h ahead (depending on the situation), while numerical weather prediction (NWP) outperforms Nowcasting only at later hours. Ensembles of both Nowcasting and NWP help to assess forecast uncertainties.</p><p>DWD's new Seamless INtegrated FOrecastiNg sYstem (SINFONY) combines forecast information from Nowcasting and NWP in an optimized way and as a function of lead time to generate seamless probabilistic precipitation forecasts from minutes to 12 hours. After four years of research and development, SINFONY is about to come to life in the upcoming two years, with an initial focus on the prediction of severe convective events.</p><p>For the development of SINFONY, different interdisciplinary teams work closely together in developing</p><ul><li>Radar Nowcasting ensembles for precipitation, reflectivity and convective cell objects</li> <li>Hourly SINFONY-RUC-EPS NWP on the km-scale with extensive data assimilation of high-resolution remote sensing (radial wind, reflectivity and cell objects from volume radar scans; Meteosat VIS channels; lightning)</li> <li>Optimal combination of Nowcasting and NWP ensemble forecasts in observation space (precipitation, radar reflectivity and cell objects)</li> <li>Systems for common Nowcasting and NWP verification of precipitation, reflectivity and objects.</li> </ul><p>For the SINFONY-RUC-EPS, new innovative and efficient forward operators for volume radar scans and visible satellite data enable direct operational assimilation of these data in an LETKF framework. Advanced model physics (stochastic PBL scheme, 2-moment bulk cloud mircophysics) contribute to an improved forecast of convective clouds.</p><p>As input for the combination of NWP and Nowcasting information, SINFONY-RUC-EPS generates simulated reflectivity volume scan ensembles of the entire German radar network every 5 min online during its forecast runs. Ensembles of composites and cell object tracks are generated by the same compositing and cell detection- and tracking methods/software packages, which are applied to generate the Nowcasting information.</p><p>To help evolve DWD's warning process for convective events towards a flexible "warn-on-objects", our Nowcasting- and NWP cell object ensemble forecasts are then blended into a seamless forecast ("probability objects") in a pragmatic way. Gridded combined precipitation and reflectivity ensembles are also under development, targeted towards hydrological warnings.</p><p>In addition to the development of SINFONY itself, focus is also put on the interaction with users (e.g. from flood forecasting centres) along the weather information value chain for co-designing the development of new forecast products and approaches to improve the prediction and warning process.</p><p>This presentation will introduce the goal and the concept of SINFONY and provide an overview on the ongoing developments as well as on the incipient interaction with users.</p>


2021 ◽  
Author(s):  
Antonio Ricchi ◽  
Vincenzo Mazzarella ◽  
Lorenzo Sangelantoni ◽  
Gianluca Redaelli ◽  
Rossella Ferretti

<div> <p><span>A severe weather events hit Italy on July 9-10, 2019 causing heavy damages by the falling of large-size hail. A trough from Northern Europe affected Italy and the Balkans advecting cold air on the Adriatic Sea. The intrusion of relatively cold and dry air on the Adriatic Sea, in a first stage through the "Bora jets" generated by the Dinaric Alps gave rise to a frontal structure on the ground, which rapidly moved from North to South Adriatic. The large thermal gradient (also with the sea surface), the interaction with the complex orography and the coastal zone, generated several storm structures along the eastern Italian coast. In particular, on 10 July 2019 between 8UTC and 12UTC a deep convective cell (probably a supercell) developed along the coast North of the city of Pescara, producing intense rainfall (accumulated rainfall reaching 130 mm/3h) and a violent hailstorm with hailstones larger than 10 cm in diameter. The storm quickly moved southward, evolving into a complex multicellular structure clearly visible by observing radar data. In this work the frontal dynamics and the genesis of the storm cell are investigated using the numerical model WRF (Weather Research and Forecasting system). Numerical experiments are carried out using a 1 km grid on Central Italy, initialized using the ECMWF dataset and the Sea Surface Temperature (SST) taken by MFS-CMEMS Copernicus dataset. The sensitivity study investigated both the impact of the initial conditions, the quality and the anomaly of the SST on the Adriatic basin in those days. Furthermore, in order to quantify the importance of the use of different microphysics, Planetary boundary Layer (PBL) and radiative schemes, several experiments are performed. The role of orography in the development and location of the convective cell is also investigated. Preliminary results show that initialization and SST played a fundamental role. In particular, the initialization several hours before the event, coupled with a detailed SST allows to correctly reproduce the atmospheric fields. The microphysics scheme turned out to play a key role for this event by showing a significant greater impact than the PBL, in terms of frontal genesis on both the synoptic and local scale. </span></p> </div>


2021 ◽  
pp. 105555
Author(s):  
Jingyu Lu ◽  
Xiushu Qie ◽  
Rubin Jiang ◽  
Xian Xiao ◽  
Dongxia Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document