scholarly journals Valley to charge current conversion in graphene linear defects

2021 ◽  
Vol 128 ◽  
pp. 114631
Author(s):  
Francesco Romeo
Author(s):  
S. Nakahara ◽  
D. M. Maher

Since Head first demonstrated the advantages of computer displayed theoretical intensities from defective crystals, computer display techniques have become important in image analysis. However the computational methods employed resort largely to numerical integration of the dynamical equations of electron diffraction. As a consequence, the interpretation of the results in terms of the defect displacement field and diffracting variables is difficult to follow in detail. In contrast to this type of computational approach which is based on a plane-wave expansion of the excited waves within the crystal (i.e. Darwin representation ), Wilkens assumed scattering of modified Bloch waves by an imperfect crystal. For localized defects, the wave amplitudes can be described analytically and this formulation has been used successfully to predict the black-white symmetry of images arising from small dislocation loops.


2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-47-Pr11-52
Author(s):  
V. M. Pan ◽  
V. S. Flis ◽  
V. A. Komashko ◽  
O. G. Plys ◽  
C. G. Tretiatchenko ◽  
...  

Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 162-183
Author(s):  
Peter Markoš ◽  
Khandker Muttalib

We reviewed some recent ideas to improve the efficiency and power output of thermoelectric nano-devices. We focused on two essentially independent aspects: (i) increasing the charge current by taking advantage of an interplay between the material and the thermodynamic parameters, which is only available in the non-linear regime; and (ii) decreasing the heat current by using nanowires with surface disorder, which helps excite localized phonons at random positions that can strongly scatter the propagating phonons carrying the thermal current.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
X. R. Wang

AbstractSpin current is a very important tensor quantity in spintronics. However, the well-known spin-Hall effect (SHE) can only generate a few of its components whose propagating and polarization directions are perpendicular with each other and to an applied charge current. It is highly desirable in applications to generate spin currents whose polarization can be in any possible direction. Here anomalous SHE and inverse spin-Hall effect (ISHE) in magnetic systems are predicted. Spin currents, whose polarisation and propagation are collinear or orthogonal with each other and along or perpendicular to the charge current, can be generated, depending on whether the applied charge current is along or perpendicular to the order parameter. In anomalous ISHEs, charge currents proportional to the order parameter can be along or perpendicular to the propagating or polarization directions of the spin current.


2005 ◽  
Vol 71 (12) ◽  
Author(s):  
Soon-wook Jung ◽  
Hyun-Woo Lee

Sign in / Sign up

Export Citation Format

Share Document