Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials

2012 ◽  
Vol 376 (17) ◽  
pp. 1489-1494 ◽  
Author(s):  
Yuguang Zhang ◽  
Jihong Wen ◽  
Yong Xiao ◽  
Xisen Wen ◽  
Jianwei Wang
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1146
Author(s):  
Heyuan Huang ◽  
Ertai Cao ◽  
Meiying Zhao ◽  
Sagr Alamri ◽  
Bing Li

Membrane-type acoustic metamaterial (MAM) has exhibited superior sound isolation properties, as well as thin and light characteristics. However, the anti-resonance modes of traditional MAMs are generated intermittently in a wide frequency range causing discontinuities in the anti-resonance modes. Achieving broadband low-frequency sound attenuation with lightweight MAM design is still a pivotal research aspect. Here, we present a strategy to realize wide sound-attenuation bands in low frequency range by introducing the design concept of bionic configuration philosophy into the MAM structures. Built by a polymeric membrane and a set of resonators, two kinds of MAM models are proposed based on the insight of a spider web topology. The sound attenuation performance and physical mechanisms are numerically and experimentally investigated. Multi-state anti-resonance modes, induced by the coupling of the bio-inspired arrangement and the host polymer film, are systematically explored. Significant sound attenuation is numerically and experimentally observed in both the lightweight bio-inspired designs. Remarkably, compared with a traditional MAM configuration, a prominent enhancement in both attenuation bandwidth and weight-reduction performance is verified. In particular, the bio-inspired MAM Model I exhibits a similar isolation performance as the reference model, but the weight is reduced by nearly half. The bio-inspired Model II broadens the sound attenuation bandwidth greatly; meanwhile, it retains a lighter weight design. The proposed bio-inspired strategies provide potential ways for designing sound isolation devices with both high functional and lightweight performance.


2018 ◽  
Vol 10 (51) ◽  
pp. 44226-44230 ◽  
Author(s):  
Quin R. S. Miller ◽  
Satish K. Nune ◽  
H. Todd Schaef ◽  
Ki Won Jung ◽  
Kayte M. Denslow ◽  
...  

2021 ◽  
Vol 263 (1) ◽  
pp. 5869-5877
Author(s):  
Xiang Wu ◽  
TengLong Jiang ◽  
JianWang Shao ◽  
GuoMing Deng ◽  
Chang Jin

Membrane-type acoustic metamaterials are thin films or plates composed of periodic units with small additional mass. A large number of studies have shown that these metamaterials exhibit tunable anti-resonance, and their transmission loss values are much higher than the corresponding quality laws. At present, most researches on membrane-type acoustic metamaterials focus on the unit cell, and the sound insulation frequency band can only be adjusted by adjusting the structural parameters and material parameters. In this paper, two kinds of acoustic metamaterials with different structures are designed, which are the center placement of the mass and the eccentric placement of the mass.The two structures have different sound insulation characteristics. By designing different array combinations of acoustic metamaterials, the sound insulation peaks of different frequency bands are obtained. This paper studies the corresponding combination law, and effectively realizes the adjustable sound insulation frequency band.


2022 ◽  
Vol 188 ◽  
pp. 108586
Author(s):  
Tuo Xing ◽  
Xiaoling Gai ◽  
Junjuan Zhao ◽  
Xianhui Li ◽  
Zenong Cai ◽  
...  

2015 ◽  
Vol 137 (4) ◽  
pp. 2298-2298 ◽  
Author(s):  
Matthew G. Blevins ◽  
Siu-Kit Lau ◽  
Lily M. Wang

Sign in / Sign up

Export Citation Format

Share Document