Phonon-polariton and band structure of electro-magneto-acoustic SH wave propagation oblique to the periodic layered piezoelectric structures

2013 ◽  
Vol 377 (12) ◽  
pp. 895-902 ◽  
Author(s):  
Y.L. Xu ◽  
C.Q. Chen ◽  
X.G. Tian
Author(s):  
Haozhe Jiang ◽  
Zhanhua Cai ◽  
Lili Yuan ◽  
Tingfeng Ma ◽  
Jianke Du ◽  
...  
Keyword(s):  

1998 ◽  
Vol 83 (9) ◽  
pp. 4652-4659 ◽  
Author(s):  
A. A. Mesquida ◽  
J. A. Otero ◽  
R. R. Ramos ◽  
F. Comas

Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.


2021 ◽  
Vol 263 (2) ◽  
pp. 4303-4311
Author(s):  
Edson J.P. de Miranda ◽  
Edilson D. Nobrega ◽  
Leopoldo P.R. de Oliveira ◽  
José M.C. Dos Santos

The wave propagation attenuation in low frequencies by using piezoelectric elastic metamaterials has been developed in recent years. These piezoelectric structures exhibit abnormal properties, different from those found in nature, through the artificial design of the topology or exploring the shunt circuit parameters. In this study, the wave propagation in a 1-D elastic metamaterial rod with periodic arrays of shunted piezo-patches is investigated. This piezoelectric metamaterial rod is capable of filtering the propagation of longitudinal elastic waves over a specified range of frequency, called band gaps. The complex dispersion diagrams are obtained by the extended plane wave expansion (EPWE) and wave finite element (WFE) approaches. The comparison between these methods shows good agreement. The Bragg-type and locally resonant band gaps are opened up. The shunt circuits influence significantly the propagating and the evanescent modes. The results can be used for elastic wave attenuation using piezoelectric periodic structures.


2014 ◽  
Vol 543-547 ◽  
pp. 7-11
Author(s):  
X.D. Yang ◽  
J.G. Yu

In this article, circumferential SH wave propagation in functionally graded material (FGM) hollow cylinders is investigated. Based on the Kelvin-Voigt viscoelastic theory, the controlling differential equations in terms of displacements are deduced. By the Legendre polynomial method, the asymptotic solutions are obtained. Through the numerical results, the influences of gradient profile and the influences of the radius to thickness ratio on dispersion and attenuation are illustrated. The work is crucial for guided ultrasonic nondestructive evaluation for graded hollow cylinders.


Sign in / Sign up

Export Citation Format

Share Document