viscoelastic theory
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4180
Author(s):  
Rui Xiao ◽  
Jiaqi Shi ◽  
Jun Xiao

Automatic fiber placement (AFP) is a type of labor-saving automatic technology for forming composite materials that are widely used in aviation and other fields. In this process, concave surface delamination is a common defect, as existing research on the conditions for this defect to occur is insufficient. To predict the occurrence of this defect, the concept of allowable interlaminar normal stress is proposed to define its occurrence conditions, and based on this concept, probe tests are carried out using the principle of time–temperature equivalence. Through the laying speed/allowable normal stress curve measured in the probe experiment, the physical meaning of allowable normal stress is discussed. At the same time, the measured curve is quantitatively analyzed, combined with viscoelastic theory and the molecular diffusion reptation model, and the dominating effect in the formation of a metal/prepreg layer and prepreg/prepreg layer is determined. Finally, the experimental data are used to guide the parameter selection in an automatic placement engineering case and prove its correctness.


Author(s):  
Xin Zhang ◽  
Xiaodong Dai ◽  
Jishi Zhao ◽  
Dengwei Jing ◽  
Fei Liu ◽  
...  

In our previous work regarding the mechanism of drag reduction and degradation by flexible linear polymers, we proposed a correlation based on the Fourier series to predict the drag reduction and its degradation, where a phase angle was involved, but the physical meaning for the correlation especially of the employed phase angle was not clear, which is however important for reasonable explanation of the drag reduction mechanism over flexible linear polymers. This letter aims to clarify this issue. We use several steps of deduction from the viscoelastic theory, and conclude that the Fourier series employed to predict the drag reduction and its degradation is due to viscoelastic property of drag-reducing polymer solution, and the phase angle represents the hysteresis of polymer in turbulent flow. Besides, our new view of drag reduction by flexible polymers can also explain why a maximum drag reduction in rotational flow appears before degradation happens.


2021 ◽  
Vol 19 (1) ◽  
pp. 133
Author(s):  
Maximilian Forstenhäusler ◽  
Enrique A. López-Guerra ◽  
Santiago D. Solares

We provide guidelines for modeling linear viscoelastic materials containing an arbitrary number of characteristic times, under atomic force microscopy (AFM) characterization. Instructions are provided to set up the governing equations that rule the deformation of the material by the AFM tip. Procedures are described in detail in the spirit of providing a simple handbook, which is accompanied by open-access code and workbook (Excel) sheets. These guidelines seek to complement the existing literature and reach out to a larger audience in the awareness of the interdisciplinary nature of science. Examples are given in the context of force-distance curves characterization within AFM, but they can be easily extrapolated to other types of contact characterization techniques at different length scales. Despite the simplified approach of this document, the algorithms described herein are built upon rigorous classical linear viscoelastic theory.


Author(s):  
Yu. V. Chovnyuk ◽  
L. A. Diachenko ◽  
Ye. O. Ivanov ◽  
N. P. Dichek ◽  
O. V. Orel

The phenomena of elastic aftereffects during loading/unloading of viscoelastic and capillary-porous bodies, relaxation of their stresses is accompanied by the energy accumulation and dissipation to be taken into account in the theory of oscillations which also considers the behavior of materials when the force is applied to them, the elastic aftereffect and stress relaxation forms ostensibly opposite energy processes that’s why the main problem to one is to understand and discovery laws for such aftereffects. The goal of the research to show that the distribution of relaxation time in viscoelastic and capillary-porous media may have a scale-invariant structure and that the indirect confirmation of the scale invariance of relaxation time hierarchy can be the principle of temperature-time superposition according to which the experimental relaxation functions obtained for different temperatures can be combined with each other using the appropriate coordinate axes stretching. We used methods of viscoelastic theory, fractal analysis and methods of mathematical physics. So, in this paper, an attempt has been made to harmonize both these theories and numerous experiments on the destruction of materials described in the academic literature. It is shown that the hierarchy of times determining shear and bulk relaxation in viscoelastic/capillary-porous medium has a fractal structure and it was observed that the presence of time fractality eases the modeling of viscoelastic/capillary-porous bodies resulting in the universal relaxation function of a rather simple kind.


Author(s):  
Yu. V. Chovnyuk ◽  
L. A. Diachenko ◽  
Ye. O. Ivanov ◽  
N. P. Dichek ◽  
O. V. Orel

The phenomena of elastic aftereffects during loading/unloading of viscoelastic and capillary-porous bodies, relaxation of their stresses is accompanied by the energy accumulation and dissipation to be taken into account in the theory of oscillations which also considers the behavior of materials when the force is applied to them, the elastic aftereffect and stress relaxation forms ostensibly opposite energy processes that’s why the main problem to one is to understand and discovery laws for such aftereffects. The goal of the research to show that the distribution of relaxation time in viscoelastic and capillary-porous media may have a scale-invariant structure and that the indirect confirmation of the scale invariance of relaxation time hierarchy can be the principle of temperature-time superposition according to which the experimental relaxation functions obtained for different temperatures can be combined with each other using the appropriate coordinate axes stretching. We used methods of viscoelastic theory, fractal analysis and methods of mathematical physics. So, in this paper, an attempt has been made to harmonize both these theories and numerous experiments on the destruction of materials described in the academic literature. It is shown that the hierarchy of times determining shear and bulk relaxation in viscoelastic/capillary-porous medium has a fractal structure and it was observed that the presence of time fractality eases the modeling of viscoelastic/capillary-porous bodies resulting in the universal relaxation function of a rather simple kind.


2020 ◽  
Vol 18 (06) ◽  
pp. 1119-1137
Author(s):  
Ramon Quintanilla ◽  
Giuseppe Saccomandi

We provide some spatial estimates for the nonlinear partial differential equation governing anti-plane motions in a nonlinear viscoelastic theory of Kelvin–Voigt type when the viscosity is a function of the strain rate. The spatial estimates we prove are an alternative of Phragmen–Lindelöf type. These estimates are possible when a precise balance between the elastic and viscoelastic nonlinearities holds.


Sign in / Sign up

Export Citation Format

Share Document