Elastic wave propagation in metamaterial rods with periodic shunted piezo-patches

2021 ◽  
Vol 263 (2) ◽  
pp. 4303-4311
Author(s):  
Edson J.P. de Miranda ◽  
Edilson D. Nobrega ◽  
Leopoldo P.R. de Oliveira ◽  
José M.C. Dos Santos

The wave propagation attenuation in low frequencies by using piezoelectric elastic metamaterials has been developed in recent years. These piezoelectric structures exhibit abnormal properties, different from those found in nature, through the artificial design of the topology or exploring the shunt circuit parameters. In this study, the wave propagation in a 1-D elastic metamaterial rod with periodic arrays of shunted piezo-patches is investigated. This piezoelectric metamaterial rod is capable of filtering the propagation of longitudinal elastic waves over a specified range of frequency, called band gaps. The complex dispersion diagrams are obtained by the extended plane wave expansion (EPWE) and wave finite element (WFE) approaches. The comparison between these methods shows good agreement. The Bragg-type and locally resonant band gaps are opened up. The shunt circuits influence significantly the propagating and the evanescent modes. The results can be used for elastic wave attenuation using piezoelectric periodic structures.

2021 ◽  
Vol 26 (3) ◽  
pp. 212-220
Author(s):  
Hui Guo ◽  
Yaru Zhang ◽  
Tao Yuan ◽  
Pei Sun Qian ◽  
Qian Cheng ◽  
...  

Wave propagation control in piezoelectric meta-materials has been extensively investigated in recent years due to its significant effects on elastic wave attenuation. In this work, a novel piezoelectric meta-material rod connected to three configurations of shunting circuits is proposed for broad band gaps. The numerical model is constructed to predict the band gap, attenuation constant, and vibration transmission. For larger attenuation within the band gaps, the shunting circuit parameters are optimized with a genetic algorithm. The result shows that the structure with the optimized parameters provides prominent vibration control ability. Both the attenuation constant and the width of the band gaps are enlarged.


2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


Author(s):  
H. Nassar ◽  
H. Chen ◽  
A. N. Norris ◽  
M. R. Haberman ◽  
G. L. Huang

Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are demonstrated analytically through an asymptotic analysis based on coupled mode theory and numerically thanks to a series of simulations in harmonic and transient regimes. High-amplitude modulations are then explored in the homogenization limit where a non-standard effective mass operator is recovered and shown to take negative values over unusually large frequency bands. These modulated metamaterials, which exhibit either non-reciprocal behaviours or non-standard effective mass operators, offer promise for applications in the field of elastic wave control in general and in one-way conversion/amplification in particular.


Author(s):  
V. Romero-Garci´a ◽  
E. Fuster-Garcia ◽  
L. M. Garci´a-Raffi ◽  
J. V. Sa´nchez-Pe´rez

Environmental noise problems become an standard topic across the years. Acoustic barriers have been purposed as a possible solution because they can act creating an acoustic attenuation zone which depends on the sound frequency, reducing the sound transmission through it. It was demonstrated that at high sound frequencies the effect of the barriers is more pronounced than at low frequencies, due to the diffraction in their edges. Sonic Crystals (SCs) are periodic arrays of scatterers embedded in a host material with strong modulation of its physical properties, that produces band gaps attenuation in frequencies related with their geometry. These frequencies are explained by the well known Bragg’s diffraction inside the crystal. SCs present different high symmetry directions, where the Bragg’s peaks appears in different frequencies ranges due to the variation of the geometry in each direction. Recently, some authors have studied the possibility to use SCs to reduce noise in free-field condition. Also, it was showed that SCs built by trees are acoustic systems that present acoustic band gaps in low frequency range due to the geometric distribution of the trees. These results led us think that these structures are a suitable device to reduce noise, this means SCs could be use as acoustic barriers. Nevertheless the technological application of these devices for controlling the noise present some problems. First, the angular dependence of the frequencies attenuated when the sound impinges over the SC. Second, the fact that the necessary space to put the SC is bigger than in the case of the traditional acoustic barriers. Finally, the necessity of some robust and long-lasting materials to use them outdoors. In this paper we show the possibility to use different materials (rigid, mixed or soft) to make scatterers, explaining their advantages or disadvantages. These materials in conjunction with some optimization methods will allow us find some solutions to the problems mentioned above. We will relate both acoustic systems, acoustic barriers and SCs, making a comparison of the main properties of each one and then, we will present the technological possibilities to design acoustic barriers based on SCs.


Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


2018 ◽  
Vol 142-143 ◽  
pp. 276-288 ◽  
Author(s):  
Dong-Jia Yan ◽  
A-Li Chen ◽  
Yue-Sheng Wang ◽  
Chuanzeng Zhang ◽  
Mikhail Golub

2021 ◽  
Vol 7 ◽  
Author(s):  
Patrick Dorin ◽  
K. W. Wang

Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over which topological wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit parameters can be utilized to adjust mode shapes corresponding to topological edge states. A further evaluation provides insight into how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance the frequency range for topological wave propagation, increase achievable mode localization, and attain additional edge states. Topological guided wave propagation that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in numerical simulations of thin plate structures. Outcomes from the presented work indicate that the easily integrable and comprehensively tunable proposed metamaterial could be employed in applications requiring a multitude of functions over a broad frequency bandwidth.


Sign in / Sign up

Export Citation Format

Share Document