scholarly journals Gauge invariant Lagrangian construction for massive higher spin fermionic fields

2006 ◽  
Vol 641 (5) ◽  
pp. 386-392 ◽  
Author(s):  
I.L. Buchbinder ◽  
V.A. Krykhtin ◽  
L.L. Ryskina ◽  
H. Takata
2009 ◽  
Vol 24 (06) ◽  
pp. 401-414 ◽  
Author(s):  
I. L. BUCHBINDER ◽  
V. A. KRYKHTIN ◽  
L. L. RYSKINA

We apply the BRST approach, previously developed for higher spin field theories, to gauge-invariant Lagrangian construction for antisymmetric massive and massless bosonic fields in arbitrary d-dimensional curved space. The obtained theories are reducible gauge models both in massless and massive cases and the order of reducibility grows with the value of the rank of the antisymmetric field. In both cases the Lagrangians contain the sets of auxiliary fields and possess more rich gauge symmetry in comparison with standard Lagrangian formulation for the antisymmetric fields. This serves as an additional demonstration of universality of the BRST approach for Lagrangian constructions in various field models.


2020 ◽  
Vol 35 (18) ◽  
pp. 2050085
Author(s):  
Hui Xu

A polynomial basis for parity-even three-point amplitudes of higher-spin massless fermions and bosons are derived in four-dimensional space–time from first principles. This basis can be used to construct three-point amplitudes of polarizations of any rank. The results are presented using polarization tensors and tensor-spinors, which is convenient when they are applied to Lagrangian construction.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


1989 ◽  
Vol 04 (05) ◽  
pp. 491-499 ◽  
Author(s):  
E. ABDALLA ◽  
R. L. VIANA

We outline some features of stochastic quantization and regularization of fermionic fields with applications to spinor QCD, showing the appearance of a non-gauge invariant counterterm. We also show that non-invariant terms cancel in supersymmetric multiplets.


Sign in / Sign up

Export Citation Format

Share Document