higher spin fields
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 15)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
N.G. Misuna

Abstract We construct an unfolded system for off-shell fields of arbitrary integer spin in 4d anti-de Sitter space. To this end we couple an on-shell system, encoding Fronsdal equations, to external Fronsdal currents for which we find an unfolded formulation. We present a reduction of the Fronsdal current system which brings it to the unfolded Fierz-Pauli system describing massive fields of arbitrary integer spin. Reformulating off-shell higher-spin system as the set of Schwinger–Dyson equations we compute propagators of higher-spin fields in the de Donder gauge directly from the unfolded equations. We discover operators that significantly simplify this computation, allowing a straightforward extraction of wave equations from an unfolded system.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Karim Benakli ◽  
Nathan Berkovits ◽  
Cassiano A. Daniel ◽  
Matheus Lize

Abstract Constructing a consistent four-dimensional Lagrangian for charged massive higher-spin fields propagating in an electromagnetic background is an open problem. In 1989, Argyres and Nappi used bosonic open string field theory to construct a Lagrangian for charged massive spin-2 fields in a constant electromagnetic background. In this paper, we use the four-dimensional hybrid formalism for open superstring field theory to construct a supersymmetric Lagrangian for charged massive spin-2 and spin-3/2 fields in a constant electromagnetic background. The hybrid formalism has the advantage over the RNS formalism of manifest $$ \mathcal{N} $$ N = 1 d=4 spacetime supersymmetry so that the spin-2 and spin-3/2 fields are combined into a single superfield and there is no need for picture-changing or spin fields.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov ◽  
Tung Tran

Abstract Higher Spin Gravities are scarce, but covariant actions for them are even scarcer. We construct covariant actions for contractions of Chiral Higher Spin Gravity that represent higher spin extensions of self-dual Yang-Mills and self-dual Gravity theories. The actions give examples of complete higher spin theories both in flat and (anti)-de Sitter spaces that feature gauge and gravitational interactions. The actions are based on a new description of higher spin fields, whose origin can be traced to early works on twistor theory. The new description simplifies the structure of interactions. In particular, we find a covariant form of the minimal gravitational interaction for higher spin fields both in flat and anti-de Sitter space, which resolves some of the puzzles in the literature.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Florent Baume ◽  
José Calderón Infante

Abstract We study the Swampland Distance Conjecture for supersymmetric theories with AdS5 backgrounds and fixed radius through their $$ \mathcal{N} $$ N = 2 SCFT holographic duals. By the Maldacena-Zhiboedov theorem, around a large class of infinite-distance points there must exist a tower of exponentially massless higher-spin fields in the bulk, for which we find bounds on the decay rate in terms of the conformal data. We discuss the origin of this tower in the gravity side for type IIB compactification on S5 and its orbifolds, and comment about more general cases.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2052
Author(s):  
Ioseph L. Buchbinder ◽  
Timofey V. Snegirev

We derived the component Lagrangian for the free N-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on the frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets were formulated for N≤4k, where k is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form and it was shown that their algebra is closed on-shell.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Euihun Joung ◽  
Massimo Taronna

Abstract In this work we classify (homogeneous) solutions to the Noether procedure in (A)dS for an arbitrary number of external legs and in general dimensions, analysing also the corresponding deformations of gauge symmetries. This builds upon the corresponding flat space classification [1], which we review and give its relation with the (A)dS result presented here. The role of dimensional dependent identities is studied in detail, which we find do not lead to new solutions for couplings involving more than three fields. For spins one and two our formalism recovers the Yang-Mills and Gravity examples.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
M. V. Khabarov ◽  
Yu. M. Zinoviev

Abstract In this paper we construct a number of cubic interaction vertices for massless bosonic and fermionic higher spin fields in flat four dimensional space. First of all, we construct these cubic vertices in AdS4 space using a so-called Fradkin-Vasiliev approach, which works only for the non-zero cosmological constant. Then we consider a flat limit taking care on all the higher derivative terms which FV-approach generates. We restrict ourselves with the four dimensions because this allows us to use the frame-like multispinor formalism which greatly simplifies all calculations and provides a description for bosons and fermions on equal footing.


Sign in / Sign up

Export Citation Format

Share Document