scholarly journals Searching for a light Higgs boson via the Yukawa process at lepton colliders

2020 ◽  
Vol 802 ◽  
pp. 135190
Author(s):  
Eung Jin Chun ◽  
Tanmoy Mondal
2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. Drechsel ◽  
G. Moortgat-Pick ◽  
G. Weiglein

AbstractThe particle discovered in the Higgs boson searches at the LHC with a mass of about 125 GeV is compatible within the present uncertainties with the Higgs boson predicted in the Standard Model (SM), but it could also be identified with one of the neutral Higgs bosons in a variety of beyond the SM (BSM) theories with an extended Higgs sector. The possibility that an additional Higgs boson (or even more than one) could be lighter than the state that has been detected at 125 GeV occurs generically in many BSM models and has some support from slight excesses that were observed above the background expectations in Higgs searches at LEP and at the LHC. The couplings between additional Higgs fields and the electroweak gauge bosons in BSM theories could be probed by model-independent Higgs searches at lepton colliders. We present a generator-level extrapolation of the limits obtained at LEP to the case of a future $$e^+e^-$$ e + e - collider, both for the search where the light Higgs boson decays into a pair of bottom quarks and for the decay-mode-independent search utilising the recoil method. We find that at the ILC with a centre-of-mass energy of 250 GeV, an integrated luminosity of 500 fb$$^{-1}$$ - 1 and polarised beams, the sensitivity to a light Higgs boson with reduced couplings to gauge bosons is improved by more than an order of magnitude compared to the LEP limits and goes much beyond the projected indirect sensitivity of the HL-LHC with 3000 fb$$^{-1}$$ - 1 from the rate measurements of the detected state at 125 GeV.


2014 ◽  
Vol 29 (18) ◽  
pp. 1430032 ◽  
Author(s):  
S. Heinemeyer ◽  
M. Mondragón ◽  
G. Zoupanos

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. We confront the predictions of an SU(5) FUT with the top and bottom quark masses and other low-energy experimental constraints, resulting in a relatively heavy SUSY spectrum, naturally consistent with the nonobservation of those particles at the LHC. The light Higgs boson mass is automatically predicted in the range compatible with the Higgs discovery at the LHC. Requiring a light Higgs boson mass in the precise range of Mh= 125.6 ±2.1 GeV favors the lower part of the allowed spectrum, resulting in clear predictions for the discovery potential at current and future pp, as well as future e+e-colliders.


Author(s):  
T. Biekötter ◽  
M. Chakraborti ◽  
S. Heinemeyer

The CMS collaboration reported an intriguing [Formula: see text] (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a [Formula: see text] (local) excess in the [Formula: see text] final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail, we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
Riccardo Barbieri ◽  
Lawrence J. Hall ◽  
Yasunori Nomura ◽  
Vyacheslav S. Rychkov

1989 ◽  
Vol 39 (1) ◽  
pp. 365-367 ◽  
Author(s):  
Ehud Duchovni ◽  
Eilam Gross ◽  
George Mikenberg

2011 ◽  
Vol 26 (23) ◽  
pp. 4053-4065 ◽  
Author(s):  
PAOLO LODONE

We consider the λSUSY model, a version of the NMSSM with large λH1H2S coupling, relaxing the approximation of large singlet mass and negligible mixing of the scalar singlet with the scalar doublets. We show that there are regions of the parameter space in which the lightest pseudoscalar can be relatively light, with unusual consequences on the decay pattern of the CP-even Higgs bosons and thus on the LHC phenomenology.


Sign in / Sign up

Export Citation Format

Share Document