Cloning of cDNAs encoding the three subunits of oxygen evolving complex in Nicotiana benthamiana and gene expression changes in tobacco leaves infected with Tobacco mosaic virus

2006 ◽  
Vol 68 (1-3) ◽  
pp. 61-68 ◽  
Author(s):  
Chun Sui ◽  
Zaifeng Fan ◽  
Sek-Man Wong ◽  
Huaifang Li
2003 ◽  
Vol 16 (12) ◽  
pp. 1135-1144 ◽  
Author(s):  
Kirsi Lehto ◽  
Mikko Tikkanen ◽  
Jean-Baptiste Hiriart ◽  
Virpi Paakkarinen ◽  
Eva-Mari Aro

The flavum strain of Tobacco mosaic virus (TMV) differs from the wild-type (wt) virus by causing strong yellow and green mosaic in the systemically infected developing leaves, yellowing in the fully expanded leaves, and distinct malformations of chloroplasts in both types of infected tissues. Analysis of the thylakoid proteins of flavum strain-infected tobacco leaves indicated that the chlorosis in mature leaves was accompanied by depletion of the entire photosystem II (PSII) core complexes and the 33-kDa protein of the oxygen evolving complex. The only change observed in the thyla-koid proteins of the corresponding wt TMV-infected leaves was a slight reduction of the α and β subunits of the ATP synthase complex. The coat proteins of different yellowing strains of TMV are known to effectively accumulate inside chloroplasts, but in this work, the viral movement protein also was detected in association with the thylakoid membranes of flavum strain-infected leaves. The mRNAs of different enzymes involved in the chlorophyll biosynthesis pathway were not reduced in the mature chlorotic leaves. These results suggest that the chlorosis was not caused by reduction of pigment biosynthesis, but rather, by reduction of specific proteins of the PSII core complexes and by consequent break-down of the pigments.


2020 ◽  
Vol 21 (4) ◽  
pp. 1414 ◽  
Author(s):  
Hui Li ◽  
Xiaobao Ying ◽  
Lina Shang ◽  
Bryce Redfern ◽  
Nicholas Kypraios ◽  
...  

Huanglongbing (HLB), also known as citrus greening, is the most notorious citrus disease worldwide. Candidatus Liberibacter asiaticus (CaLas) is a phloem-restricted bacterium associated with HLB. Because there is no mutant library available, the pathogenesis of CaLas is obscure. In this study, we employed tobacco mosaic virus (TMV) to express two mature secretion proteins CLIBASIA_03915 (m03915) and CLIBASIA_04250 (m04250) in Nicotiana benthamiana (N. benthamiana). Phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the two low molecular weight proteins, while no phloem necrosis was observed in the plants that expressed the control, green fluorescent protein (GFP). Additionally, no phloem necrosis was observed in the senescent leaves of N. benthamiana that expressed the null mutation of m03915 and frameshifting m04250. The subcellular localizations of m03915 and m04250 were determined by fusion with GFP using confocal microscopy. The subcellular localization of m03915 was found to be as free GFP without a nuclear localization sequence (NLS). However, m04250 did have an NLS. Yeast two-hybrid (Y2H) was carried out to probe the citrus proteins interacting with m03915 and m04250. Six citrus proteins were found to interact with m03915. The identified proteins were involved in the metabolism of compounds, transcription, response to abiotic stress, ubiquitin-mediated protein degradation, etc. The prey of m04250 was involved in the processing of specific pre-mRNAs. Identification of new virulence factors of CaLas will give insight into the pathogenesis of CaLas, and therefore, it will eventually help develop the HLB-resistant citrus.


2002 ◽  
Vol 129 (3) ◽  
pp. 1032-1044 ◽  
Author(s):  
Andrzej Talarczyk ◽  
Magdalena Krzymowska ◽  
Wojciech Borucki ◽  
Jacek Hennig

Sign in / Sign up

Export Citation Format

Share Document